Entanglement property of the Werner state in accelerated frames

We study the entanglement property of a free Dirac field in a Werner state as seen by two relatively accelerated parties. We study the concurrence, negativity, mutual information and $$\pi $$ -tangle of the tripartite system. We show how these entanglement properties depend on both the free parameter F, which is a real parameter called fidelity, and the acceleration parameter r. The degree of entanglement is degraded by the Unruh effect, but we notice that the Werner state always remains entangled even in the acceleration limit, and thus, it can become a good candidate to quantum teleportation in uniform acceleration frame. We notice that the entropy $$S(\rho _{A\, \mathrm{I}\, \mathrm{II}})$$ decreases with the free parameter F, and also $$S(\rho _{A\, \mathrm{I}\, \mathrm{II}})$$ , $$S(\rho _{A})$$ and $$S(\rho _{\mathrm{I}\, \mathrm{II}})$$ are independent of the acceleration parameter r. The von Neumann entropy is not a good entanglement measure any more for this mixed state. We verify that the Werner state in a noninertial frame obeys the Coffman–Kundu–Wootters (CKW) monogamous inequality and find that two useful relations for the concurrence and negativity.

[1]  P. Davies Scalar production in Schwarzschild and Rindler metrics , 1975 .

[2]  N. D. Birrell,et al.  Quantum fields in curved space , 2007 .

[3]  David Edward Bruschi,et al.  Particle and anti-particle bosonic entanglement in non-inertial frames , 2012, 1205.5296.

[4]  E. Martín-Martínez,et al.  Redistribution of particle and antiparticle entanglement in noninertial frames , 2011, 1102.4759.

[5]  David Edward Bruschi,et al.  Voyage to Alpha Centauri: Entanglement degradation of cavity modes due to motion , 2011, 1105.1875.

[6]  Jiliang Jing,et al.  Erratum: Multipartite entanglement of fermionic systems in noninertial frames [Phys. Rev. A 83, 022314 (2011)] , 2018 .

[7]  Paul M. Alsing,et al.  Observer-dependent entanglement , 2012, 1210.2223.

[8]  Eylee Jung,et al.  Three-tangle in non-inertial frame , 2012, 1203.5594.

[9]  I. Fuentes,et al.  Entanglement of Dirac fields in an expanding spacetime , 2010, 1007.1569.

[10]  M. Horodecki,et al.  Reduction criterion of separability and limits for a class of distillation protocols , 1999 .

[11]  Qian Dong,et al.  Entanglement measures of a new type pseudo-pure state in accelerated frames , 2018, Frontiers of Physics.

[12]  P. Alsing,et al.  Entanglement of Dirac fields in noninertial frames , 2006, quant-ph/0603269.

[13]  J. Cirac,et al.  Three qubits can be entangled in two inequivalent ways , 2000, quant-ph/0005115.

[14]  Jing Jiliang Multipartite entanglement of fermionic systems in noninertial frames , 2011 .

[15]  T. G. Downes,et al.  Entangling moving cavities in noninertial frames. , 2010, Physical review letters.

[16]  Behrouz Mirza,et al.  Pseudo-entanglement evaluated in noninertial frames , 2010, 1011.1446.

[17]  M. K. Khan,et al.  Non-Maximal Tripartite Entanglement Degradation of Dirac and Scalar Fields in Non-Inertial Frames , 2014, 1402.7152.

[18]  Shahpoor Moradi Distillability of entanglement in accelerated frames , 2009 .

[19]  Xing Xiao,et al.  Quantum Fisher information in noninertial frames , 2014, 1401.0596.

[20]  M. Lewenstein,et al.  Volume of the set of separable states , 1998, quant-ph/9804024.

[21]  K. Życzkowski On the volume of the set of mixed entangled states II , 1999, quant-ph/9902050.

[22]  Yaakov S. Weinstein,et al.  Tripartite entanglement witnesses and entanglement sudden death , 2008, 0812.4612.

[23]  Robert B. Mann,et al.  Persistence of tripartite nonlocality for noninertial observers , 2011, 1107.4633.

[24]  W. Wootters,et al.  Distributed Entanglement , 1999, quant-ph/9907047.

[25]  Eylee Jung,et al.  Tripartite entanglement in a noninertial frame , 2010, 1010.6154.

[26]  Atsushi Higuchi,et al.  The Unruh effect and its applications , 2007, 0710.5373.

[27]  Yihang Nie,et al.  Time evolution and transfer of entanglement between an isolated atom and a Jaynes–Cummings atom , 2007 .

[28]  Yaakov S. Weinstein,et al.  Entanglement dynamics in three-qubit X states , 2010, 1004.3748.

[29]  W. Unruh Notes on black-hole evaporation , 1976 .

[30]  Charles H. Bennett,et al.  Purification of noisy entanglement and faithful teleportation via noisy channels. , 1995, Physical review letters.

[31]  W. Qiang,et al.  Geometric measure of quantum discord for entanglement of Dirac fields in noninertial frames , 2015 .

[32]  David Edward Bruschi,et al.  Unruh effect in quantum information beyond the single-mode approximation , 2010, 1007.4670.

[33]  W. Wootters Entanglement of Formation of an Arbitrary State of Two Qubits , 1997, quant-ph/9709029.

[34]  Qian Dong,et al.  Genuine multipartite concurrence for entanglement of Dirac fields in noninertial frames , 2018, Physical Review A.

[35]  R. Mann,et al.  Alice falls into a black hole: entanglement in noninertial frames. , 2004, Physical review letters.

[36]  Terhal,et al.  Entanglement of formation for isotropic states , 2000, Physical review letters.

[37]  Entanglement measures of W-state in noninertial frames , 2018, Physics Letters B.

[38]  G. Vidal,et al.  Computable measure of entanglement , 2001, quant-ph/0102117.

[39]  H. Fan,et al.  Monogamy inequality in terms of negativity for three-qubit states , 2007, quant-ph/0702127.

[40]  Werner,et al.  Quantum states with Einstein-Podolsky-Rosen correlations admitting a hidden-variable model. , 1989, Physical review. A, General physics.

[41]  G J Milburn,et al.  Teleportation with a uniformly accelerated partner. , 2003, Physical review letters.

[42]  Daniel R. Terno,et al.  Quantum Information and Relativity Theory , 2002, quant-ph/0212023.

[43]  Ting Yu,et al.  Sudden death of entanglement: Classical noise effects , 2006 .

[44]  Salman Khan Tripartite entanglement of fermionic system in accelerated frames , 2014, 1612.02600.

[45]  Pérès Separability Criterion for Density Matrices. , 1996, Physical review letters.