Higher-order moment models of dense stellar systems: applications to the modelling of the stellar velocity distribution function

Dense stellar systems such as globular clusters, galactic nuclei and nuclear star clusters are ideal loci to study stellar dynamics due to the very high densities reached, usually a million times higher than in the solar neighbourhood; they are unique laboratories to study processes related to relaxation. There are a number of different techniques to model the global evolution of such a system. We can roughly separate these approaches into two major groups: the particle-based models, such as direct N-body and Monte Carlo models, and the statistical models, in which we describe a system of a very large number of stars through a one-particle phase-space distribution function. In this approach we assume that relaxation is the result of a large number of two-body gravitational encounters with a net local effect. We present two moment models that are based on the collisional Boltzmann equation. By taking moments of the Boltzmann equation one obtains an infinite set of differential moment equations where the equation for the moment of order n contains moments of order n + 1. In our models we assume spherical symmetry but we do not require dynamical equilibrium. We truncate the infinite set of moment equations at order n = 4 for the first model and at order n = 5 for the second model. The collisional terms on the right-hand side of the moment equations account for two-body relaxation and are computed by means of the Rosenbluth potentials. We complete the set of moment equations with closure relations which constrain the degree of anisotropy of our model by expressing moments of order n + 1 by moments of order n. The accuracy of this approach relies on the number of moments included from the infinite series. Since both models include fourth-order moments we can study mechanisms in more detail that increase or decrease the number of high-velocity stars. The resulting model allows us to derive a velocity distribution function, with unprecedented accuracy, compared to previous moment models.

[1]  D. Heggie,et al.  Statistics of N-Body Simulations - Part Two - Equal Masses after Core Collapse , 1994, astro-ph/9403024.

[2]  K. Nomoto,et al.  Gravothermal Catastrophe of Finite Amplitude , 1978 .

[3]  Australia.,et al.  Monte Carlo simulations of star clusters -IV. Calibration of the Monte Carlo code and comparison with observations for the open cluster M67 , 2008, 0801.3709.

[4]  R. Spurzem,et al.  Comparison between Fokker-Planck and gaseous models of star clusters in the multi-mass case revisited , 1995 .

[5]  D. P. Agarwal Combined Faculties for the Natural Sciences and for Mathematics of the Ruperto-Carola University of Heidelberg, Germany for the degree of Doctor of Natural Sciences , 2007 .

[6]  M. Giersz,et al.  A stochastic Monte Carlo approach to model real star cluster evolution - II. Self-consistent models and primordial binaries , 1999, astro-ph/9911504.

[7]  R. Larson A Method for Computing the Evolution of Star Clusters , 1970 .

[8]  J. Ostriker,et al.  FEEDBACK FROM CENTRAL BLACK HOLES IN ELLIPTICAL GALAXIES. I. MODELS WITH EITHER RADIATIVE OR MECHANICAL FEEDBACK BUT NOT BOTH , 2009, 0901.1089.

[9]  R. Kulsrud,et al.  Stellar distribution around a black hole: Numerical integration of the Fokker-Planck equation , 1978 .

[10]  S. L. Shapiro,et al.  Star clusters containing massive central black holes. IV. Galactic tidal fields , 1982 .

[11]  Ortwin Gerhard,et al.  Line-of-sight velocity profiles in spherical galaxies: breaking the degeneracy between anisotropy and mass , 1993 .

[12]  H. Cohn,et al.  Numerical integration of the Fokker-Planck equation and the evolution of star clusters , 1979 .

[13]  D. Heggie,et al.  A simple dynamical evolutionary model for ω Cen , 2003 .

[14]  H. Yorke,et al.  Interactions between stars and gas in galactic nuclei , 1990 .

[15]  S. L. Shapiro,et al.  Star clusters containing massive, central black holes. III - Evolution calculations , 1979 .

[16]  R. Chevalier,et al.  Random Gravitational Encounters and the Evolution of Spherical Systems. V. Gravitational Shocks , 1973 .

[17]  P. P. Eggleton,et al.  On the consequences of the gravothermal catastrophe , 1980 .

[18]  A. Just,et al.  N‐body models of rotating globular clusters , 2007, astro-ph/0702206.

[19]  S. L. Shapiro,et al.  Star clusters containing massive, central black holes: Monte Carlo simulations in two-dimensional phase space , 1978 .

[20]  F. A. Rasio,et al.  Monte Carlo Simulations of Globular Cluster Evolution. III. Primordial Binary Interactions , 2003, astro-ph/0301521.

[21]  S. Aarseth From NBODY1 to NBODY6: The Growth of an Industry , 1999 .

[22]  University of Bern,et al.  A new Monte Carlo code for star cluster simulations - II. Central black hole and stellar collisions , 2002 .

[23]  T. Mahoney,et al.  The Central Kiloparsec of Starbursts and Active Galactic Nuclei: The La Palma Connection , 2001, astro-ph/0112011.

[24]  Mirek Giersz Monte Carlo simulations of star clusters - I. First Results , 1998 .

[25]  Gravitational Waves from Eccentric Intermediate-mass Black Hole Binaries , 2009, 0901.0604.

[26]  D. Heggie,et al.  Evolution of star clusters after core collapse , 1989 .

[27]  D. Heggie,et al.  Statistics of N-body simulations — IV. Unequal masses with a tidal field , 1997 .

[28]  F. Rasio,et al.  Monte Carlo Simulations of Globular Cluster Evolution. II. Mass Spectra, Stellar Evolution, and Lifetimes in the Galaxy , 1999, astro-ph/9912155.

[29]  M. Giersz Monte Carlo simulations of star clusters – II. Tidally limited, multimass systems with stellar evolution , 2000, astro-ph/0009341.

[30]  Pau Amaro-Seoane,et al.  Intermediate-mass black holes in colliding clusters: Implications for lower-frequency gravitational-wave astronomy , 2006 .

[31]  D. Heggie,et al.  Monte Carlo simulations of star clusters -VI. The globular cluster NGC 6397 , 2009, 0901.1085.

[32]  M. Hénon Monte Carlo models of star clusters , 1971 .

[33]  M. Giersz,et al.  Anisotropic gaseous models of tidally limited star clusters: comparison with other methods , 2004, astro-ph/0412698.

[34]  D. Sugimoto,et al.  Post-collapse evolution and gravothermal oscillation of globular clusters , 1984 .

[35]  William M. MacDonald,et al.  Fokker-Planck Equation for an Inverse-Square Force , 1957 .

[36]  Japan.,et al.  Dynamical evolution of rotating stellar systems – II. Post-collapse, equal-mass system , 2001, astro-ph/0109062.

[37]  Subrahmanyan Chandrasekhar,et al.  Principles of Stellar Dynamics , 1942 .

[38]  Piet Hut,et al.  Dynamical evolution of star clusters - confrontation of theory and observations : proceedings of the 174th Symposium of the International Astronomical Union, held in Tokyo, Japan, August 22-25, 1995 , 1996 .

[39]  L. Spitzer,et al.  Random gravitational encounters and the evolution of spherical systems. VII. Systems with several mass groups. , 1975 .

[40]  J. Ostriker,et al.  FEEDBACK FROM CENTRAL BLACK HOLES IN ELLIPTICAL GALAXIES. II. CAN PURELY MECHANICAL ENERGY FEEDBACK MODELS WORK? , 2009, 0905.4294.

[41]  Fokker-Planck Models of Star Clusters with Anisotropic Velocity Distributions II. Post-Collapse Evolution , 1995, astro-ph/9609025.

[42]  S. Shapiro Monte Carlo Simulations of the 2+1 Dimensional Fokker-Planck Equation: Spherical Star Clusters Containing Massive, Central Black Holes , 1985 .

[43]  M. J. Benacquista,et al.  Compact binaries in star clusters – I. Black hole binaries inside globular clusters , 2009, 0910.0546.

[44]  M. Giersz,et al.  A stochastic Monte Carlo approach to modelling of real star cluster evolution — I. The model , 1996 .

[45]  M. Gilfanov,et al.  Lighthouses of the universe : the most luminous celestial objects and their use for cosmology : proceedings of the MPA/ESO/MPE/USM Joint Astronomy Conference held in Garching, Germany, 6-10 August 2001 , 2002 .

[46]  Stuart L. Shapiro,et al.  Random Gravitational Encounters and the Evolution of Spherical Systems. III. Halo , 1971 .

[47]  R. Spurzem Evolution of Stars and Gas in Galactic Nuclei , 1992 .

[48]  S. Aarseth,et al.  A chain regularization method for the few-body problem , 1989 .

[49]  P. Murdin MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY , 2005 .

[50]  L. Spitzer,et al.  Random Gravitational Encounters and the Evolution of Spherical Systems. IV Isolated Systems of Identical Stars , 1972 .

[51]  P. Hut,et al.  Building a better leapfrog , 1995 .

[52]  S. Larsen,et al.  Globular Clusters - Guides to Galaxies , 2009 .

[53]  P. Amaro-Seoane,et al.  Accretion of stars on to a massive black hole: a realistic diffusion model and numerical studies , 2004, astro-ph/0401163.

[54]  R. H. Miller,et al.  IRREVERSIBILITY IN SMALL STELLAR DYNAMICAL SYSTEMS , 1964 .

[56]  T. Hara Evolution of a Super-Massive Star in a Dense Stellar System , 1978 .

[57]  A. Marchant,et al.  Star clusters containing massive, central black holes. II. Self-consistent potentials. , 1979 .

[58]  R. Spurzem,et al.  Dynamical evolution of rotating dense stellar systems with embedded black holes , 2010 .

[59]  M. Begelman Evolution of supermassive stars as a pathway to black hole formation , 2009, 0910.4398.

[60]  Simon Portegies Zwart,et al.  Monte Carlo Simulations of Globular Cluster Evolution. I. Method and Test Calculations , 2000 .

[61]  P. Amaro-Seoane,et al.  Physical Processes in Star–Gas Systems , 2004, Publications of the Astronomical Society of Australia.

[62]  F. Rasio,et al.  Monte Carlo Simulations of Globular Cluster Evolution. IV. Direct Integration of Strong Interactions , 2006, astro-ph/0608261.

[63]  Rainer Spurzem,et al.  Anisotropic gaseous models for the evolution of star clusters , 1991 .

[64]  Edward K. Porter,et al.  Binaries of massive black holes in rotating clusters: Dynamics, gravitational waves, detection and the role of eccentricity , 2009, 0908.0755.

[65]  R. Spurzem,et al.  DYNAMICAL EVOLUTION OF ROTATING SINGLE-MASS STELLAR CLUSTER , 2005 .

[66]  M. Hénon,et al.  The Monte Carlo method , 1971 .

[67]  Emil Khalisi,et al.  A comprehensive nbody study of mass segregation in star clusters: energy equipartition and escape , 2006, astro-ph/0602570.

[68]  E. Bettwieser A numerical method for the study of the gravothermal instability in star clusters , 1983 .

[69]  Arlette Noels-Grötsch,et al.  The Galactic halo. From globular clusters to field stars. Proceedings. , 2000 .

[70]  J. S. Stodółkiewicz,et al.  Monte-Carlo Calculations , 1985 .

[71]  Seppo Mikkola,et al.  An implementation ofN-body chain regularization , 1993 .

[72]  D. Heggie,et al.  Monte Carlo simulations of star clusters – V. The globular cluster M4 , 2008 .

[73]  M. Franx,et al.  A new method for the identification of non-Gaussian line profiles in elliptical galaxies , 1993 .

[74]  H. Cohn,et al.  Late core collapse in star clusters and the gravothermal instability , 1980 .

[75]  D. Heggie Post-collapse evolution of a gaseous cluster model , 1984 .

[76]  J. Ostriker,et al.  FEEDBACK FROM CENTRAL BLACK HOLES IN ELLIPTICAL GALAXIES. III. MODELS WITH BOTH RADIATIVE AND MECHANICAL FEEDBACK , 2010, 1003.0578.

[77]  D. Heggie,et al.  Statistics of N-body simulations – I. Equal masses before core collapse , 1993, astro-ph/9305008.

[78]  Runaway collisions in young star clusters – I. Methods and tests , 2005, astro-ph/0503129.

[79]  Rainer Spurzem,et al.  BINARY BLACK HOLE MERGER IN GALACTIC NUCLEI: POST-NEWTONIAN SIMULATIONS , 2008, 0812.2756.

[80]  Rainer Spurzem,et al.  Comparative study between N-body and Fokker–Planck simulations for rotating star clusters – I. Equal-mass system , 2007, 0709.4318.

[81]  Martin D. Weinberg,et al.  Evolution of globular clusters in the Galaxy , 1990 .

[82]  P. Martini,et al.  Coevolution of Black Holes and Galaxies , 2004 .

[83]  Rainer Spurzem,et al.  Direct collisional simulation of 10000 particles past core collapse , 1996 .

[84]  G. Drukier,et al.  Anisotropic Fokker-Planck Models for the Evolution of Globular Star Clusters: The Core-Halo Connection , 1999 .

[85]  Piet Hut,et al.  Dynamics of Star Clusters , 1985 .

[86]  M. Giersz,et al.  A stochastic Monte Carlo approach to modelling real star cluster evolution - III. Direct integration of three- and four-body interactions , 2003, astro-ph/0301643.

[87]  R. Spurzem DYNAMICS OF STAR CLUSTERS AND DENSE NUCLEI , 2001 .

[88]  R. Mathieu,et al.  Random gravitational encounters and the evolution of spherical systems. VIII. Clusters with an initial distribution of binaries , 1980 .

[89]  L. Spitzer,et al.  Random gravitational encounters and the evolution of spherical systems. VI. Plummer's model. , 1975 .