Relationship between onset thresholds, trigger types and rotation shear for the m/n = 2/1 neoclassical tearing mode in a high-β spherical torus

The onset conditions for the m/n = 2/1 neoclassical tearing mode are studied in terms of neoclassical drive, triggering instabilities, and toroidal rotation or rotation shear, in the spherical torus NSTX (Ono M. et al 2000 Nucl. Fusion 40 557). There are three typical onset conditions for these modes, given in order of increasing neoclassical drive required for mode onset: triggering by energetic particle modes, triggering by edge localized modes and cases where the modes appear to grow without a trigger. In all cases, the required drive increases with toroidal rotation shear, implying a stabilizing effect from the shear.

[1]  R. L. Haye,et al.  The stabilizing effect of flow shear on m/n=3/2 magnetic island width in DIII-D , 2008 .

[2]  E. J. Strait,et al.  The influence of rotation on the βN threshold for the 2∕1 neoclassical tearing mode in DIII-Da) , 2008 .

[3]  A. Sen,et al.  Dynamical origin of shear flow induced modifications of magnetic islands , 2007 .

[4]  J. Manickam,et al.  Chapter 3: MHD stability, operational limits and disruptions , 2007 .

[5]  E. Lazzaro,et al.  Effect of sheared equilibrium plasma rotation on the classical tearing mode in a cylindrical geometry , 2007 .

[6]  L. Lao,et al.  Resistive stability of 2∕1 modes near 1∕1 resonancea) , 2006 .

[7]  R. Bell,et al.  Observation of plasma toroidal-momentum dissipation by neoclassical toroidal viscosity. , 2006, Physical review letters.

[8]  R. J. La Haye,et al.  Neoclassical tearing modes and their controla) , 2005 .

[9]  A categorization of tearing mode onset in tokamaks via nonlinear simulation , 2005 .

[10]  A. Sen,et al.  Effect of sheared flows on classical and neoclassical tearing modes , 2005 .

[11]  A. K. Sen,et al.  Neoclassical tearing modes in the presence of sheared flows , 2005 .

[12]  O. Sauter,et al.  Comparison of m = 2, n = 1 neo-classical tearing mode limits in JET and DIII-D , 2004 .

[13]  E. Fredrickson,et al.  Bounce precession fishbones in the national spherical torus experiment , 2003 .

[14]  H. Wilson,et al.  Propagation of magnetic islands in the Er=0 frame of co-injected neutral beam driven discharges in the DIII-D tokamak , 2003 .

[15]  L. L. Lao,et al.  A mechanism for tearing onset near ideal stability boundaries , 2003 .

[16]  R Akers,et al.  Neoclassical tearing physics in the spherical tokamak MAST. , 2002, Physical review letters.

[17]  O. Sauter,et al.  Control of neoclassical tearing modes by sawtooth control. , 2002, Physical review letters.

[18]  Observation of spontaneous neoclassical tearing modes , 2002 .

[19]  M. Viola,et al.  Exploration of spherical torus physics in the NSTX device , 2000 .

[20]  O. Sauter,et al.  Neoclassical conductivity and bootstrap current formulas for general axisymmetric equilibria and arbitrary collisionality regime , 1999 .

[21]  S. Šesnić,et al.  Comparison of fishbones and fishbone-like frequency changes of the neoclassical tearing mode at ASDEX Upgrade , 1999 .

[22]  Sibylle Günter,et al.  Seed island of neoclassical tearing modes at ASDEX Upgrade , 1999 .

[23]  S. Kruger,et al.  Geometrical influences on neoclassical magnetohydrodynamic tearing modes , 1998 .

[24]  E. J. Strait,et al.  The collisionality dependence of tokamak -limits , 1996 .

[25]  P. Morrison,et al.  Resistive tearing instability with equilibrium shear flow , 1990 .

[26]  G. Einaudi,et al.  Resistive instabilities in a flowing plasma. II. Effects of viscosity , 1989 .

[27]  G. Einaudi,et al.  Resistive instabilities in a flowing plasma: I. Inviscid case , 1986 .

[28]  Dennis J Strickler,et al.  Features of spherical torus plasmas , 1986 .

[29]  Paul H. Rutherford,et al.  Nonlinear growth of the tearing mode , 1973 .

[30]  Harold P. Furth,et al.  Finite‐Resistivity Instabilities of a Sheet Pinch , 1963 .