Improving the Mechanical Properties of Fe-Nb-(Ni-Mn) Dendrite-Ultrafine Eutectic Composites via Controlling the Primary Phase Features

[1]  J. Eckert,et al.  The influence of in situ formed precipitates on the plasticity of Fe-Nb-B-Cu bulk metallic glasses , 2011 .

[2]  J. M. Park,et al.  Microstructure and mechanical properties of Fe–Si–Ti–(Cu, Al) heterostructured ultrafine composites , 2011 .

[3]  J. Eckert,et al.  Evolution of constitution, structure, and mechanical properties in Fe-Ti-Zr-B heterogeneous multiphase composites , 2011 .

[4]  Robert O Ritchie,et al.  A damage-tolerant glass. , 2011, Nature materials.

[5]  J. Eckert,et al.  Improving the plasticity of a high strength Fe–Si–Ti ultrafine composite by introduction of an immiscible element , 2010 .

[6]  G. Wang,et al.  Tailoring of in situ Ti-based bulk glassy matrix composites with high mechanical performance , 2010 .

[7]  Douglas C. Hofmann,et al.  Shape Memory Bulk Metallic Glass Composites , 2010, Science.

[8]  Peter V Liddicoat,et al.  Nanostructural hierarchy increases the strength of aluminium alloys. , 2010, Nature communications.

[9]  Yuan Wu,et al.  Bulk Metallic Glass Composites with Transformation‐Mediated Work‐Hardening and Ductility , 2010, Advanced materials.

[10]  G. Wang,et al.  Transformation-mediated ductility in CuZr-based bulk metallic glasses. , 2010, Nature materials.

[11]  J. Eckert,et al.  Microstructure, thermal, and mechanical characterization of rapidly solidified high strength Fe_84.3Cr_4.3Mo_4.6V_2.2C_4.6 , 2010 .

[12]  Lin Liu,et al.  Fe-based bulk metallic glass matrix composite with large plasticity , 2010 .

[13]  J. Eckert,et al.  Transformation-induced plasticity in Fe-Cr-V-C , 2010 .

[14]  J. Eckert,et al.  Microstructural heterogeneities governing the deformation of Cu47.5Zr47.5Al5 bulk metallic glass composites , 2009 .

[15]  J. Eckert,et al.  Work-hardening mechanisms of the Ti_60Cu_14Ni_12Sn_4Nb_10 nanocomposite alloy , 2009 .

[16]  J. Eckert,et al.  Modeling deformation behavior of Cu–Zr–Al bulk metallic glass matrix composites , 2009 .

[17]  Kamanio Chattopadhyay,et al.  High-strength bulk Al-based bimodal ultrafine eutectic composite with enhanced plasticity , 2009 .

[18]  M. Demetriou,et al.  Development of tough, low-density titanium-based bulk metallic glass matrix composites with tensile ductility , 2008, Proceedings of the National Academy of Sciences.

[19]  J. Eckert,et al.  Enhancement of plasticity in Ti-rich Ti–Zr–Be–Cu–Ni–Ta bulk glassy alloy via introducing the structural inhomogeneity , 2008 .

[20]  Tae Eung Kim,et al.  High strength Ni–Zr binary ultrafine eutectic-dendrite composite with large plastic deformability , 2008 .

[21]  Myung-Shin Lee,et al.  High strength ultrafine eutectic Fe–Nb–Al composites with enhanced plasticity , 2008 .

[22]  Douglas C. Hofmann,et al.  Designing metallic glass matrix composites with high toughness and tensile ductility , 2008, Nature.

[23]  Tae Eung Kim,et al.  Nanostructure–dendrite composites in the Fe–Zr binary alloy system exhibiting high strength and plasticity , 2007 .

[24]  Peter K. Liaw,et al.  Two-glassy-phase bulk metallic glass with remarkable plasticity , 2007 .

[25]  J. Eckert,et al.  Superior mechanical properties of FeCrMoVC , 2007 .

[26]  J. Eckert,et al.  New Fe-Cr-Mo-Ga-C composites with high compressive strength and large plasticity , 2007 .

[27]  Gang Wang,et al.  Super Plastic Bulk Metallic Glasses at Room Temperature , 2007, Science.

[28]  C. Zhang,et al.  Fe-based bulk metallic glass with high plasticity , 2007 .

[29]  Jian Xu,et al.  Chill-cast in situ composites in the pseudo-ternary Mg–(Cu,Ni)–Y glass-forming system: Microstructure and compressive properties , 2007 .

[30]  D. V. Louzguine-Luzgin,et al.  Deformation behavior of high strength metastable hypereutectic Ti–Fe–Co alloys , 2007 .

[31]  W. Wang,et al.  Making metallic glasses plastic by control of residual stress , 2006, Nature materials.

[32]  M. Meyers,et al.  Mechanical properties of nanocrystalline materials , 2006 .

[33]  E. Ma,et al.  Microstructure and compressive properties of chill-cast Mg-Al-Ca alloys , 2006 .

[34]  J. Eckert,et al.  Rotation mechanism of shear fracture induced by high plasticity in Ti-based nano-structured composites containing ductile dendrites , 2005 .

[35]  D. V. Louzguine-Luzgin,et al.  Investigation of Ti-Fe-Co bulk alloys with high strength and enhanced ductility , 2005 .

[36]  C. Schuh,et al.  Effect of a controlled volume fraction of dendritic phases on tensile and compressive ductility in La-based metallic glass matrix composites , 2004 .

[37]  X. Liao,et al.  Retaining ductility , 2004, Nature materials.

[38]  J. Eckert,et al.  In situ formed Ti–Cu–Ni–Sn–Ta nanostructure-dendrite composite with large plasticity , 2003 .

[39]  Fenghua Zhou,et al.  High tensile ductility in a nanostructured metal , 2002, Nature.

[40]  T. Hufnagel,et al.  Metallic glass matrix composite with precipitated ductile reinforcement , 2002 .

[41]  R. M. Srivastava,et al.  Cooling Rate Evaluation for Bulk Amorphous Alloys from Eutectic Microstructures in Casting Processes. , 2002 .

[42]  Hays,et al.  Microstructure controlled shear band pattern formation and enhanced plasticity of bulk metallic glasses containing in situ formed ductile phase dendrite dispersions , 2000, Physical review letters.

[43]  K. Ishida Calculation of the effect of alloying elements on the Ms temperature in steels , 1995 .

[44]  W. Marsden I and J , 2012 .

[45]  Tae Eung Kim,et al.  In situ martensitic phase reinforced Fe-Nb-Ni-Mn ultrafine composite with enhanced mechanical properties , 2012 .

[46]  Ludwig Schultz,et al.  Novel Ti-base nanostructure–dendrite composite with enhanced plasticity , 2003, Nature materials.

[47]  John W. Hutchinson,et al.  Crack deflection at an interface between dissimilar elastic-materials , 1989 .