A new modular interpolation algorithm for factoring multivariate polynominals

In this paper we present a technique that uses a new interpolation scheme to reconstruct a multivariate polynomial factorization from a number of univariate factorizations. Whereas other interpolation algorithms for polynomial factorization depend on various extensions of the Hilbert irreducibility theorem, our approach is the first to depend only upon the classical formulation. The key to our technique is the interpolation scheme for multivalued black boxes originally developed by Ar et. al. [1]. We feel that this combination of the classical Hilbert irreducibility theorem and multivalued black boxes provides a particularly simple and intuitive approach to polynomial factorization.

[1]  Karl Dörge Zum Hilbertschen Irreduzibilitätssatz , 1926 .

[2]  D. Cantor,et al.  A new algorithm for factoring polynomials over finite fields , 1981 .

[3]  E. Berlekamp Factoring polynomials over finite fields , 1967 .

[4]  Michael D. Fried,et al.  On Hilbert's Irreducibility Theorem , 1974 .

[5]  Karl Dörge Über die Seltenheit der reduziblen Polynome und der Normalgleichung , 1926 .

[6]  Erich Kaltofen,et al.  Computing with polynomials given by straight-line programs II sparse factorization , 1985, 26th Annual Symposium on Foundations of Computer Science (sfcs 1985).

[7]  A. Schinzel On Hilbert's irreducibility theorem , 1965 .

[8]  Erich Kaltofen,et al.  Computing with Polynomials Given By Black Boxes for Their Evaluations: Greatest Common Divisors, Factorization, Separation of Numerators and Denominators , 1990, J. Symb. Comput..

[9]  Marek Karpinski,et al.  Fast Parallel Algorithms for Sparse Multivariate Polynomial Interpolation over Finite Fields , 1988, SIAM J. Comput..

[10]  Michael Ben-Or,et al.  A deterministic algorithm for sparse multivariate polynomial interpolation , 1988, STOC '88.

[11]  Richard J. Lipton,et al.  A Probabilistic Remark on Algebraic Program Testing , 1978, Inf. Process. Lett..

[12]  Marek Karpinski,et al.  The matching problem for bipartite graphs with polynomially bounded permanents is in NC , 1987, 28th Annual Symposium on Foundations of Computer Science (sfcs 1987).

[13]  Erich Kaltofen,et al.  Factoring Sparse Multivariate Polynomials , 1983, J. Comput. Syst. Sci..

[14]  Erich Kaltofen A Polynomial-Time Reduction from Bivariate to Univariate Integral Polynomial Factorization , 1982, FOCS.

[15]  Erich Kaltofen,et al.  Polynomial-Time Reductions from Multivariate to Bi- and Univariate Integral Polynomial Factorization , 1985, SIAM J. Comput..

[16]  Karl Dörge Einfacher Beweis des Hilbertschen Irreduzibilitätssatzes , 1927 .

[17]  Ming-Deh A. Huang Factorization of Polynomials over Finite Fields and Decomposition of Primes in Algebraic Number Fields , 1991, J. Algorithms.

[18]  Hans-Wilhelm Von Knobloch Zum Hilbertschen Irreduzibilitätssatz , 1955 .

[19]  Robin Milner,et al.  On Observing Nondeterminism and Concurrency , 1980, ICALP.

[20]  V. Sprindžuk,et al.  Arithmetic specializations in polynomials. , 1983 .

[21]  Victor S. Miller,et al.  Factoring Polynomials via Relation-Finding , 1992, ISTCS.

[22]  Danny Dolev,et al.  Theory of Computing and Systems , 1992, Lecture Notes in Computer Science.

[23]  S. D. Cohen The Distribution of Galois Groups and Hilbert's Irreducibility Theorem , 1981 .

[24]  Ming-Deh A. Huang Generalized Riemann Hypothesis and Factoring Polynomials over Finite Fields , 1991, J. Algorithms.

[25]  E. Berlekamp Factoring polynomials over large finite fields* , 1970, SYMSAC '71.

[26]  Jacob T. Schwartz,et al.  Fast Probabilistic Algorithms for Verification of Polynomial Identities , 1980, J. ACM.

[27]  D. Hilbert,et al.  Über die Irreduzibilität ganzer rationaler Funktionen mit ganzzahligen Koeffizienten , 1933 .

[28]  Marek Karpinski,et al.  On Zero-Testing and Interpolation of k-Sparse Multivariate Polynomials Over Finite Fields , 1991, Theor. Comput. Sci..

[29]  Wolfgang Franz Untersuchungen zum Hilbertschen Irreduzibilitätssatz. , 1931 .

[30]  Richard Zippel Newton's iteration and the sparse Hensel algorithm (Extended Abstract) , 1981, SYMSAC '81.

[31]  Richard Zippel,et al.  Probabilistic algorithms for sparse polynomials , 1979, EUROSAM.

[32]  Richard Zippel,et al.  Interpolating Polynomials from Their Values , 1990, J. Symb. Comput..

[33]  L. Kronecker Grundzüge einer arithmetischen Theorie der algebraischen Grössen. (Abdruck einer Festschrift zu Herrn E. E. Kummers Doctor-Jubiläum, 10. September 1881.). , 2022 .

[34]  Arnold Schönhage Factorization of Univariate Integer Polynomials by Diophantine Aproximation and an Improved Basis Reduction Algorithm , 1984, ICALP.

[35]  Jacob T. Schwartz Probabilistic algorithms for verification of polynomial identities (invited) , 1979, EUROSAM.

[36]  László Lovász,et al.  Factoring polynomials with rational coefficients , 1982 .

[37]  Lajos Rónyai,et al.  Galois groups and factoring polynomials over finite fields , 1989, 30th Annual Symposium on Foundations of Computer Science.

[38]  Richard Zippel,et al.  Effective polynomial computation , 1993, The Kluwer international series in engineering and computer science.

[39]  J. Gathen Hensel and Newton methods in valuation rings , 1984 .