Summary of session B3: analytic approximations, perturbation methods and their applications

The paper summarizes the parallel session B3 analytic approximations, perturbation methods and their applications of the GR18 conference. The talks in the session reported notably recent advances in black hole perturbations and post-Newtonian approximations as applied to sources of gravitational waves.

[1]  M. Smolkin,et al.  Preprint typeset in JHEP style- HYPER VERSION Classical Effective Field Theory and Caged black holes , 2022 .

[2]  E. Poisson,et al.  Multiscale analysis of the electromagnetic self-force in a weak gravitational field , 2007, 0708.3037.

[3]  E. Poisson,et al.  Osculating orbits in Schwarzschild spacetime, with an application to extreme mass-ratio inspirals , 2007, 0708.3033.

[4]  M. Vas'uth,et al.  Gravitational waveforms for finite mass binaries , 2007, 0705.3481.

[5]  H. Sotani,et al.  Gravitational radiation from collapsing magnetized dust , 2007, gr-qc/0702091.

[6]  H. Nakano,et al.  Adiabatic Evolution of Three ‘Constants’ of Motion for Greatly Inclined Orbits in Kerr Spacetime , 2007, gr-qc/0702054.

[7]  A. Buonanno,et al.  Inspiral, merger and ring-down of equal-mass black-hole binaries , 2006, gr-qc/0610122.

[8]  A. Buonanno,et al.  Higher-order spin effects in the dynamics of compact binaries. II. Radiation field , 2006, gr-qc/0605140.

[9]  A. Buonanno,et al.  Higher-order spin effects in the dynamics of compact binaries. I. Equations of motion , 2006, gr-qc/0605139.

[10]  A. Wiseman,et al.  Self-force in a gauge appropriate to separable wave equations , 2006, gr-qc/0611072.

[11]  H. Dittus,et al.  Is the physics within the Solar system really understood , 2006, gr-qc/0604052.

[12]  I. Rothstein,et al.  Effective field theory of gravity for extended objects , 2004, hep-th/0409156.

[13]  E. Poisson,et al.  Limitations of the adiabatic approximation to the gravitational self-force , 2005, gr-qc/0509122.

[14]  L. Price,et al.  Metric reconstruction from Weyl scalars , 2005 .

[15]  S. Detweiler Perspective on gravitational self-force analyses , 2005, gr-qc/0501004.

[16]  A. Gopakumar,et al.  Third post-Newtonian accurate generalized quasi-Keplerian parametrization for compact binaries in eccentric orbits , 2004, gr-qc/0407049.

[17]  Eric Poisson,et al.  The Motion of Point Particles in Curved Spacetime , 2004, Living reviews in relativity.

[18]  E. Bertschinger,et al.  The Harmonic Structure of High-Frequency Quasi-periodic Oscillations in Accreting Black Holes , 2003, astro-ph/0309458.

[19]  B. Whiting,et al.  Self force via a Green's function decomposition , 2002, gr-qc/0202086.

[20]  O. Blaes,et al.  The Kozai Mechanism and the Evolution of Binary Supermassive Black Holes , 2002, astro-ph/0203370.

[21]  B. Owen,et al.  Gravitational field and equations of motion of spinning compact binaries to 2.5 post-Newtonian order , 2000, gr-qc/0010014.

[22]  R. Wald,et al.  Axiomatic approach to electromagnetic and gravitational radiation reaction of particles in curved spacetime , 1996, gr-qc/9610053.

[23]  Takahiro Tanaka,et al.  Gravitational radiation reaction to a particle motion , 1996, gr-qc/9606018.

[24]  Kidder,et al.  Coalescing binary systems of compact objects to (post)5/2-Newtonian order. V. Spin effects. , 1995, Physical review. D, Particles and fields.

[25]  G. Schäfer,et al.  Gravitational wave tails and binary star systems , 1993 .

[26]  Wiseman,et al.  Spin effects in the inspiral of coalescing compact binaries. , 1992, Physical review. D, Particles and fields.

[27]  I. Dymnikova High-frequency radiation from a particle falling into a Kerr black hole , 1977 .

[28]  S. Chandrasekhar On the equations governing the perturbations of the Schwarzschild black hole , 1975, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.