Phonons and Thermal Expansion Behavior of NiSi and NiGe

We have carried out first principles calculations of the vibrational and thermodynamic behavior in NiSi and isostructural compound NiGe. Phonon density of states has also been measured in NiSi using inelastic neutron scattering techniques. We find that the vibrational spectra of the two compounds are very different, due to the difference in the size and mass of Si and Ge. Interesting anomalous thermal behavior of NiSi due to anharmonic phonons is brought out well in our calculations, particularly the negative thermal expansion (NTE) along the b-axis of the orthorhombic unit cell. Large difference in thermal expansion behavior of NiSi and NiGe is very well reproduced by the calculations. Additionally, calculations enable to identify the phonon modes which lend major contribution to the negative thermal expansion behavior in NiSi, and reasons for negligible NTE in NiGe. Such typical representative modes at the zone-boundary along b-axis involve transverse vibrations of Si/Ge along c-axis. PACS numbers: 78.70.Nx, 63.20.-e, 65.40.–b.

[1]  C. Detavernier,et al.  The influence of alloying on the phase formation sequence of ultra-thin nickel silicide films and on the inheritance of texture , 2018 .

[2]  Ling Lu,et al.  Double-Weyl Phonons in Transition-Metal Monosilicides. , 2017, Physical review letters.

[3]  A. Kozorezov,et al.  Nonbolometric bottleneck in electron-phonon relaxation in ultrathin WSi films , 2016, 1607.07321.

[4]  V. Verma,et al.  Superconducting fluctuations and characteristic time scales in amorphous WSi , 2017, 1712.05019.

[5]  M. Gupta,et al.  Phonons and Anomalous Thermal Expansion Behaviour in Crystalline Solids , 2017, 1711.07267.

[6]  D. Dobson,et al.  The thermal expansion of (Fe1−yNiy)Si , 2017, Journal of physics. Condensed matter : an Institute of Physics journal.

[7]  Shou-Cheng Zhang,et al.  Multiple Types of Topological Fermions in Transition Metal Silicides. , 2017, Physical review letters.

[8]  A. Kim,et al.  Nickel Silicide Phase Distribution of Electroless Deposited Contacts on Silicon P+ Junction Substrate Using Nano-Indented Atomic Force Microscopy , 2017 .

[9]  Ki Hwan Seok,et al.  Bottom-gate poly-Si thin-film transistors by nickel silicide seed-induced lateral crystallization with self-aligned lightly doped layer , 2017 .

[10]  G. Madsen,et al.  Ab initio investigation of the anomalous phonon softening in FeSi , 2016 .

[11]  J. Gunasekera,et al.  Metallic nickel silicides: Experiments and theory for NiSi and first principles calculations for other phases , 2016, 1602.05840.

[12]  L. Dubrovinsky,et al.  Experimental observation of phonons as spectators in FeSi electronic gap formation , 2016 .

[13]  Hanchul Kim First-principles calculations of the lattice instability and the symmetry-lowering modulation of PtSi , 2015 .

[14]  K. Lu,et al.  Growth of single-crystalline nickel silicide nanowires with excellent physical properties , 2015 .

[15]  O. Delaire,et al.  Effects of temperature and pressure on phonons in FeSi1–xAlx , 2013 .

[16]  X. Kuang,et al.  Effect of pressure on structural phase transition and elastic properties in NiSi , 2013 .

[17]  S. Clark,et al.  High-pressure phase transitions and equations of state in NiSi. II. Experimental results , 2012 .

[18]  L. Vočadlo,et al.  High‐pressure phase transitions and equations of state in NiSi. I. Ab initio simulations , 2012 .

[19]  F. Soyalp,et al.  Elastic and phonon properties of FeSi and CoSi in the B2 structure , 2012 .

[20]  O. Delaire,et al.  Phonon softening and metallization of a narrow-gap semiconductor by thermal disorder , 2011, Proceedings of the National Academy of Sciences.

[21]  D. Connétable,et al.  First-principles study of the structural, electronic, vibrational, and elastic properties of orthorhombic NiSi , 2009 .

[22]  B. Iversen,et al.  Phonon properties in narrow gap FeSi and FeSb2 single crystals , 2008 .

[23]  F. Nemouchi,et al.  Anisotropy of the thermal expansion of the Ni(Si1−xGex) phases investigated by high-temperature x-ray diffraction , 2007 .

[24]  Paolo Lugli,et al.  Silicon-nanowire transistors with intruded nickel-silicide contacts. , 2006, Nano letters.

[25]  M. Scheffler,et al.  First-principles study of thin magnetic transition-metal silicide films on Si(001) , 2005, cond-mat/0504515.

[26]  R. Wentzcovitch,et al.  Equation of state and elasticity of FeSi , 2004 .

[27]  D. Chi,et al.  Raman scattering probe of anharmonic effects in NiSi , 2004 .

[28]  Christophe Detavernier,et al.  Thermal expansion of the isostructural PtSi and NiSi: Negative expansion coefficient in NiSi and stress effects in thin films , 2003 .

[29]  L. Vočadlo,et al.  A new high-pressure phase of FeSi , 2002 .

[30]  K. Knight,et al.  Thermal expansion and crystal structure of FeSi between 4 and 1173 K determined by time-of-flight neutron powder diffraction , 2002 .

[31]  C. Kloc,et al.  Thermodynamic properties of the nickel silicide NiSi between 8 and 400 K , 1999 .

[32]  G. Kresse,et al.  From ultrasoft pseudopotentials to the projector augmented-wave method , 1999 .

[33]  Pooi See Lee,et al.  Micro-Raman spectroscopy investigation of nickel silicides and nickel (platinum) silicides , 1999 .

[34]  A. Damascelli,et al.  Infrared spectroscopic study of phonons coupled to charge excitations in FeSi , 1996, cond-mat/9612045.

[35]  A. Damascelli,et al.  Optical phonons in the reflectivity spectrum of FeSi , 1997, cond-mat/9706155.

[36]  Burke,et al.  Generalized Gradient Approximation Made Simple. , 1996, Physical review letters.

[37]  Kresse,et al.  Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. , 1996, Physical review. B, Condensed matter.

[38]  Fisk,et al.  Thermodynamics of FeSi. , 1995, Physical review. B, Condensed matter.

[39]  A. Migliori,et al.  Elastic properties of FeSi , 1994 .

[40]  Onda,et al.  Structural and electronic properties of metastable epitaxial FeSi1+x films on Si(111). , 1992, Physical review. B, Condensed matter.

[41]  Price,et al.  Correlated motions in glasses studied by coherent inelastic neutron scattering. , 1985, Physical review letters.

[42]  J. H. Weaver,et al.  Electronic structure of nickel silicidesNi2Si, NiSi, and NiSi2 , 1982 .

[43]  H. Monkhorst,et al.  SPECIAL POINTS FOR BRILLOUIN-ZONE INTEGRATIONS , 1976 .

[44]  L. Pauling,et al.  The nature of the bonds in the iron silicide, FeSi, and related crystals , 1948 .

[45]  E. Grüneisen,et al.  Untersuchungen an Metallkristallen. I , 1924 .

[46]  D. Rue The nature of bonds. , 2022 .