Koszul complexes and relative homological algebra of functors over posets

In relative homological algebra of vector space valued functors indexed by a poset, free functors are replaced by an arbitrary family of functors. Relative Betti diagrams encode the multiplicities of these functors in relative minimal resolutions. In this article we show that, under certain conditions, grading the chosen family of functors by an upper semilattice guarantees the existence of relative minimal resolutions and the uniqueness of direct sum decompositions in these resolutions. These conditions are necessary for defining relative Betti diagrams and computing these diagrams using Koszul complexes.

[1]  S. Oudot,et al.  On the bottleneck stability of rank decompositions of multi-parameter persistence modules , 2022, ArXiv.

[2]  Eric J. Hanson,et al.  Homological approximations in persistence theory , 2021, Canadian Journal of Mathematics.

[3]  S. Oudot,et al.  Signed Barcodes for Multi-Parameter Persistence via Rank Decompositions and Rank-Exact Resolutions , 2021, SoCG.

[4]  Wojciech Chacholski,et al.  Realisations of posets and tameness , 2021, 2112.12209.

[5]  Peter Bubenik,et al.  Homological Algebra for Persistence Modules , 2019, Found. Comput. Math..

[6]  Ezra Miller Homological algebra of modules over posets. , 2020, 2008.00063.

[7]  Oliver Vipond Local Equivalence of Metrics for Multiparameter Persistence Modules , 2020, 2004.11926.

[8]  Emerson G. Escolar,et al.  On Approximation of $2$D Persistence Modules by Interval-decomposables , 2019, 1911.01637.

[9]  Overtoun M. G. Jenda,et al.  Relative homological algebra , 1956 .

[10]  B. Sturmfels,et al.  Combinatorial Commutative Algebra , 2004 .

[11]  C. Weibel,et al.  An Introduction to Homological Algebra: References , 1960 .

[12]  Miles Reid,et al.  Commutative Ring Theory , 1989 .

[13]  Auslander Maurice,et al.  Representation Theory of Artin Algebras I , 1974 .

[14]  Samuel Eilenberg,et al.  Foundations of relative homological algebra , 1965 .

[15]  M. Auslander Relative homology and representation theory I. Relative homology and homologically finite subcategories , 2022 .