Metagenomic Surveys of Gut Microbiota

Gut microbiota of higher vertebrates is host-specific. The number and diversity of the organisms residing within the gut ecosystem are defined by physiological and environmental factors, such as host genotype, habitat, and diet. Recently, culture-independent sequencing techniques have added a new dimension to the study of gut microbiota and the challenge to analyze the large volume of sequencing data is increasingly addressed by the development of novel computational tools and methods. Interestingly, gut microbiota maintains a constant relative abundance at operational taxonomic unit (OTU) levels and altered bacterial abundance has been associated with complex diseases such as symptomatic atherosclerosis, type 2 diabetes, obesity, and colorectal cancer. Therefore, the study of gut microbial population has emerged as an important field of research in order to ultimately achieve better health. In addition, there is a spontaneous, non-linear, and dynamic interaction among different bacterial species residing in the gut. Thus, predicting the influence of perturbed microbe–microbe interaction network on health can aid in developing novel therapeutics. Here, we summarize the population abundance of gut microbiota and its variation in different clinical states, computational tools available to analyze the pyrosequencing data, and gut microbe–microbe interaction networks.

[1]  Sharon I. Greenblum,et al.  Metagenomic systems biology of the human gut microbiome reveals topological shifts associated with obesity and inflammatory bowel disease , 2011, Proceedings of the National Academy of Sciences.

[2]  Jens Nielsen,et al.  Assessing the Human Gut Microbiota in Metabolic Diseases , 2013, Diabetes.

[3]  Johannes Goll,et al.  Bioinformatics Applications Note Database and Ontologies Metarep: Jcvi Metagenomics Reports—an Open Source Tool for High-performance Comparative Metagenomics , 2022 .

[4]  S. Mazmanian,et al.  The gut microbiota shapes intestinal immune responses during health and disease , 2009, Nature Reviews Immunology.

[5]  Scot E Dowd,et al.  Massive parallel 16S rRNA gene pyrosequencing reveals highly diverse fecal bacterial and fungal communities in healthy dogs and cats. , 2011, FEMS microbiology ecology.

[6]  Frank Oliver Glöckner,et al.  TETRA: a web-service and a stand-alone program for the analysis and comparison of tetranucleotide usage patterns in DNA sequences , 2004, BMC Bioinformatics.

[7]  J. Raes,et al.  Microbial interactions: from networks to models , 2012, Nature Reviews Microbiology.

[8]  S. Kravitz,et al.  CAMERA: A Community Resource for Metagenomics , 2007, PLoS biology.

[9]  E. Purdom,et al.  Diversity of the Human Intestinal Microbial Flora , 2005, Science.

[10]  T. Wolever,et al.  Adiposity, gut microbiota and faecal short chain fatty acids are linked in adult humans , 2014, Nutrition & Diabetes.

[11]  P. Allen,et al.  Commensal Bacteroides species induce colitis in host-genotype-specific fashion in a mouse model of inflammatory bowel disease. , 2011, Cell host & microbe.

[12]  Christophe Caron,et al.  Towards the human intestinal microbiota phylogenetic core. , 2009, Environmental microbiology.

[13]  David S Guttman,et al.  Infant gut microbiota and the hygiene hypothesis of allergic disease , 2012, Allergy, Asthma & Clinical Immunology.

[14]  F. Bäckhed,et al.  Host-Bacterial Mutualism in the Human Intestine , 2005, Science.

[15]  Intawat Nookaew,et al.  FANTOM: Functional and taxonomic analysis of metagenomes , 2013, BMC Bioinformatics.

[16]  Xiao Chen,et al.  The role of gut microbiota in the gut-brain axis: current challenges and perspectives , 2013, Protein & Cell.

[17]  J. Stockman,et al.  Metabolic Syndrome and Altered Gut Microbiota in Mice Lacking Toll-Like Receptor 5 , 2012 .

[18]  Matthew R. Redinbo,et al.  Alleviating Cancer Drug Toxicity by Inhibiting a Bacterial Enzyme , 2010, Science.

[19]  Stefano Guandalini,et al.  Recommendations for probiotic use-2011 update. , 2011, Journal of clinical gastroenterology.

[20]  James Versalovic,et al.  Probiotic Lactobacillus reuteri biofilms produce antimicrobial and anti-inflammatory factors , 2009, BMC Microbiology.

[21]  Youfang Cao,et al.  Interactions between gut microbiota, host genetics and diet relevant to development of metabolic syndromes in mice , 2010, The ISME Journal.

[22]  Cynthia L Sears,et al.  A human colonic commensal promotes colon tumorigenesis via activation of T helper type 17 T cell responses , 2009, Nature Medicine.

[23]  E. Mayer,et al.  Gut/brain axis and the microbiota. , 2015, The Journal of clinical investigation.

[24]  Songnian Hu,et al.  Metagenomic Insights into the Fibrolytic Microbiome in Yak Rumen , 2012, PloS one.

[25]  I-Min A. Chen,et al.  IMG/M: the integrated metagenome data management and comparative analysis system , 2011, Nucleic Acids Res..

[26]  Jeremy K. Nicholson,et al.  Gut microbiota: a potential new territory for drug targeting , 2008, Nature Reviews Drug Discovery.

[27]  Paul J Kennedy,et al.  Irritable bowel syndrome: a microbiome-gut-brain axis disorder? , 2014, World journal of gastroenterology.

[28]  Weizhong Li,et al.  Analysis and comparison of very large metagenomes with fast clustering and functional annotation , 2009, BMC Bioinformatics.

[29]  C. Greenhill,et al.  Gut microbiota: Anti-cancer therapies affected by gut microbiota , 2014, Nature Reviews Gastroenterology &Hepatology.

[30]  Alison S. Waller,et al.  Genomic variation landscape of the human gut microbiome , 2012, Nature.

[31]  R. Arditi,et al.  Microbial Interactions within a Cheese Microbial Community , 2007, Applied and Environmental Microbiology.

[32]  N. Pace,et al.  Metagenomic approaches for defining the pathogenesis of inflammatory bowel diseases. , 2008, Cell host & microbe.

[33]  Bernard Henrissat,et al.  Organismal, genetic, and transcriptional variation in the deeply sequenced gut microbiomes of identical twins , 2010, Proceedings of the National Academy of Sciences.

[34]  Hideaki Tanaka,et al.  MetaVelvet: an extension of Velvet assembler to de novo metagenome assembly from short sequence reads , 2011, BCB '11.

[35]  J. Clemente,et al.  The Impact of the Gut Microbiota on Human Health: An Integrative View , 2012, Cell.

[36]  Haifeng Lu,et al.  Symbiotic gut microbes modulate human metabolic phenotypes , 2008, Proceedings of the National Academy of Sciences.

[37]  F. Bäckhed,et al.  Obesity alters gut microbial ecology. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[38]  M. Orešič,et al.  Drug metabolome of the simvastatin formed by human intestinal microbiota in vitro. , 2011, Molecular bioSystems.

[39]  Dirk Elewaut,et al.  The role of the gut and microbes in the pathogenesis of spondyloarthritis. , 2014, Best practice & research. Clinical rheumatology.

[40]  Jean-Michel Antoine,et al.  Guidance for substantiating the evidence for beneficial effects of probiotics: prevention and management of infections by probiotics. , 2010, The Journal of nutrition.

[41]  Andreas Wilke,et al.  phylogenetic and functional analysis of metagenomes , 2022 .

[42]  John C Lindon,et al.  Pharmacometabonomic identification of a significant host-microbiome metabolic interaction affecting human drug metabolism , 2009, Proceedings of the National Academy of Sciences.

[43]  Brian J. Bennett,et al.  Gut flora metabolism of phosphatidylcholine promotes cardiovascular disease , 2011, Nature.

[44]  R. Ley,et al.  Metabolic Syndrome and Altered Gut Microbiota in Mice Lacking Toll-Like Receptor 5 , 2010, Science.

[45]  Martin Hartmann,et al.  Introducing mothur: Open-Source, Platform-Independent, Community-Supported Software for Describing and Comparing Microbial Communities , 2009, Applied and Environmental Microbiology.

[46]  Sitao Wu,et al.  WebMGA: a customizable web server for fast metagenomic sequence analysis , 2011, BMC Genomics.

[47]  Liping Zhao,et al.  Structural segregation of gut microbiota between colorectal cancer patients and healthy volunteers , 2011, The ISME Journal.

[48]  N. Pace,et al.  Molecular-phylogenetic characterization of microbial community imbalances in human inflammatory bowel diseases , 2007, Proceedings of the National Academy of Sciences.

[49]  Mohammad A Kamal,et al.  A possible link of gut microbiota alteration in type 2 diabetes and Alzheimer's disease pathogenicity: an update. , 2014, CNS & neurological disorders drug targets.

[50]  F. Bushman,et al.  QIIME allows integration and analysis of high-throughput community sequencing data. Nat. Meth. , 2010 .

[51]  Vincent J. Denef,et al.  Strain-resolved community genomic analysis of gut microbial colonization in a premature infant , 2010, Proceedings of the National Academy of Sciences.

[52]  William A. Walters,et al.  QIIME allows analysis of high-throughput community sequencing data , 2010, Nature Methods.

[53]  I. Rigoutsos,et al.  Accurate phylogenetic classification of variable-length DNA fragments , 2007, Nature Methods.

[54]  Fredrik H. Karlsson,et al.  Symptomatic atherosclerosis is associated with an altered gut metagenome , 2012, Nature Communications.

[55]  T. Kelder,et al.  Correlation network analysis reveals relationships between diet-induced changes in human gut microbiota and metabolic health , 2014, Nutrition & Diabetes.

[56]  M. Pop,et al.  Metagenomic Analysis of the Human Distal Gut Microbiome , 2006, Science.

[57]  B. Ramakrishna,et al.  Real‐time polymerase chain reaction quantification of specific butyrate‐producing bacteria, Desulfovibrio and Enterococcus faecalis in the feces of patients with colorectal cancer , 2008, Journal of gastroenterology and hepatology.

[58]  Fangqing Zhao,et al.  Composition-based classification of short metagenomic sequences elucidates the landscapes of taxonomic and functional enrichment of microorganisms , 2012, Nucleic acids research.

[59]  L. Chistoserdova,et al.  Functional Metagenomics: Recent Advances and Future Challenges , 2009, Biotechnology & genetic engineering reviews.

[60]  R. Knight,et al.  Evolution of Mammals and Their Gut Microbes , 2008, Science.

[61]  A. Mchardy,et al.  The PhyloPythiaS Web Server for Taxonomic Assignment of Metagenome Sequences , 2012, PloS one.

[62]  Michiel Kleerebezem,et al.  The human gut microbiome: are we our enterotypes? , 2011, Microbial biotechnology.

[63]  Curtis Huttenhower,et al.  Microbial Co-occurrence Relationships in the Human Microbiome , 2012, PLoS Comput. Biol..

[64]  Beatrice Vitali,et al.  Impact of a synbiotic food on the gut microbial ecology and metabolic profiles , 2010, BMC Microbiology.

[65]  Siu-Ming Yiu,et al.  Erratum: SOAPdenovo2: an empirically improved memory-efficient short-read de novo assembler , 2015, GigaScience.

[66]  Li C. Xia,et al.  Accurate Genome Relative Abundance Estimation Based on Shotgun Metagenomic Reads , 2011, PloS one.

[67]  Fabian Schreiber,et al.  CoMet—a web server for comparative functional profiling of metagenomes , 2011, Nucleic Acids Res..

[68]  P. Bork,et al.  A human gut microbial gene catalogue established by metagenomic sequencing , 2010, Nature.

[69]  Peer Bork,et al.  SmashCommunity: a metagenomic annotation and analysis tool , 2010, Bioinform..

[70]  F. Tinahones,et al.  Impact of the gut microbiota on the development of obesity and type 2 diabetes mellitus , 2014, Front. Microbiol..

[71]  Maria Pia Conte,et al.  Dysbiotic Events in Gut Microbiota: Impact on Human Health , 2014, Nutrients.

[72]  Wolfgang Gerlach,et al.  WebCARMA: a web application for the functional and taxonomic classification of unassembled metagenomic reads , 2009, BMC Bioinformatics.

[73]  Hubert Rehrauer,et al.  A global network of coexisting microbes from environmental and whole-genome sequence data. , 2010, Genome research.

[74]  Min Zhang,et al.  Individuality in gut microbiota composition is a complex polygenic trait shaped by multiple environmental and host genetic factors , 2010, Proceedings of the National Academy of Sciences.

[75]  J. Suchodolski,et al.  COMPANION ANIMALS SYMPOSIUM: Microbes and gastrointestinal health of dogs and cats1 , 2011, Journal of animal science.

[76]  James Versalovic,et al.  Effects of probiotics on gut microbiota: mechanisms of intestinal immunomodulation and neuromodulation , 2013, Therapeutic advances in gastroenterology.

[77]  J. Faith,et al.  Predicting a Human Gut Microbiota’s Response to Diet in Gnotobiotic Mice , 2011, Science.

[78]  F. Shanahan,et al.  The gut microbiota—a clinical perspective on lessons learned , 2012, Nature Reviews Gastroenterology &Hepatology.

[79]  B. White,et al.  Polysaccharide utilization by gut bacteria: potential for new insights from genomic analysis , 2008, Nature Reviews Microbiology.

[80]  C. Huttenhower,et al.  Metagenomic microbial community profiling using unique clade-specific marker genes , 2012, Nature Methods.

[81]  Fabio Cominelli,et al.  Probiotics promote gut health through stimulation of epithelial innate immunity , 2009, Proceedings of the National Academy of Sciences.

[82]  Richard A. Flavell,et al.  NLRP6 Inflammasome Regulates Colonic Microbial Ecology and Risk for Colitis , 2011, Cell.

[83]  Arthur Kaser,et al.  Gut microbiome, obesity, and metabolic dysfunction. , 2011, The Journal of clinical investigation.

[84]  B. Finlay,et al.  Host-mediated inflammation disrupts the intestinal microbiota and promotes the overgrowth of Enterobacteriaceae. , 2007, Cell host & microbe.

[85]  David S. Wishart,et al.  METAGENassist: a comprehensive web server for comparative metagenomics , 2012, Nucleic Acids Res..

[86]  A. Darzi,et al.  Gut microbiome-host interactions in health and disease , 2011, Genome Medicine.

[87]  Adam Godzik,et al.  Cd-hit: a fast program for clustering and comparing large sets of protein or nucleotide sequences , 2006, Bioinform..

[88]  Jonathan A Eisen,et al.  Environmental Shotgun Sequencing: Its Potential and Challenges for Studying the Hidden World of Microbes , 2007, PLoS biology.

[89]  Qiang Feng,et al.  A metagenome-wide association study of gut microbiota in type 2 diabetes , 2012, Nature.

[90]  Jed Fuhrman,et al.  Faculty Opinions recommendation of IMG/M: the integrated metagenome data management and comparative analysis system. , 2012 .

[91]  S. Tringe,et al.  Metagenomic Discovery of Biomass-Degrading Genes and Genomes from Cow Rumen , 2011, Science.

[92]  H. Neu,et al.  Digoxin-inactivating bacteria: identification in human gut flora. , 1983, Science.

[93]  R. Knight,et al.  The Effect of Diet on the Human Gut Microbiome: A Metagenomic Analysis in Humanized Gnotobiotic Mice , 2009, Science Translational Medicine.

[94]  Jörg M. Steiner,et al.  Effect of a multi-species synbiotic formulation on fecal bacterial microbiota of healthy cats and dogs as evaluated by pyrosequencing. , 2011, FEMS microbiology ecology.

[95]  S. Schuster,et al.  Integrative analysis of environmental sequences using MEGAN4. , 2011, Genome research.

[96]  F. Shanahan,et al.  Therapeutic implications of manipulating and mining the microbiota , 2009, The Journal of physiology.

[97]  J. Martínez,et al.  Metagenomics and antibiotics. , 2012, Clinical microbiology and infection : the official publication of the European Society of Clinical Microbiology and Infectious Diseases.

[98]  Bernard Henrissat,et al.  Metabolic Reconstruction for Metagenomic Data and Its Application to the Human Microbiome , 2012, PLoS Comput. Biol..

[99]  Jeffrey I. Gordon,et al.  Reciprocal Gut Microbiota Transplants from Zebrafish and Mice to Germ-free Recipients Reveal Host Habitat Selection , 2006, Cell.

[100]  Fiona Powrie,et al.  Microbiota, Disease, and Back to Health: A Metastable Journey , 2012, Science Translational Medicine.

[101]  John C. Wooley,et al.  A Primer on Metagenomics , 2010, PLoS Comput. Biol..

[102]  Lynn K. Carmichael,et al.  Evaluation of 16S rDNA-Based Community Profiling for Human Microbiome Research , 2012, PloS one.

[103]  J. Faith,et al.  Extensive personal human gut microbiota culture collections characterized and manipulated in gnotobiotic mice , 2011, Proceedings of the National Academy of Sciences.

[104]  S. Salzberg,et al.  Phymm and PhymmBL: Metagenomic Phylogenetic Classification with Interpolated Markov Models , 2009, Nature Methods.

[105]  Peer Bork,et al.  MOCAT: A Metagenomics Assembly and Gene Prediction Toolkit , 2012, PloS one.

[106]  B. Roe,et al.  A core gut microbiome in obese and lean twins , 2008, Nature.

[107]  Jian Wang,et al.  SOAPdenovo2: an empirically improved memory-efficient short-read de novo assembler , 2012, GigaScience.