Rate-User-Perceived-Quality Aware Replication Strategy for Video Streaming over Wireless Mesh Networks

In this research, we consider the replication strategy for the applications of video streaming in wireless mesh networks (WMNs). In particular, we propose a closed-form of optimal replication densities for a set of frames of a video streaming by exploiting not only the skewed access probability of each frame but also the skewed loss probability and skewed encoding rate-distortion information. The simulation results demonstrate that our method improves the replication performance in terms of user-perceived quality (UPQ) which includes: 1) minimum average maximum reconstructed distortion for high peak signal-to-noise ratio (PSNR), 2) small reconstructed distortion fluctuation among frames for smooth playback, and 3) reasonable average maximum transmission distance for continuous playback. Furthermore, the proposed strategy consumes smaller storage capacity compared to other existing optimal replication strategies. More importantly, the effect of encoding rate is carefully investigated to show that high encoding rate does not always gain high performance of replication for video streaming.