Supercontinuum generation in chloroform-filled photonic crystal fibers

We propose a novel method to achieve highly nonlinear photonic crystal fiber (PCF) by filling highly nonlinear liquid chloroform in the core of hollow-core PCF (HCPCF). The dispersion properties and electric field distribution of the fundamental mode are calculated by using the full-vector finite element method (FVFEM). Simulation results indicate that the zero-dispersion wavelength (ZDWL) of the chloroform-filled PCF is adjustable around 800 nm. Hence the femtosecond laser pulses with central wavelength at 800 nm can propagate in anomalous dispersion regime of the PCF, inducing the spectra broadening.

[1]  A. Samoc,et al.  Dispersion of refractive properties of solvents: Chloroform, toluene, benzene, and carbon disulfide in ultraviolet, visible, and near-infrared , 2003 .

[2]  E. M. dos Santos,et al.  Liquid-core, liquid-cladding photonic crystal fibers. , 2007, Optics express.

[3]  William T. Lotshaw,et al.  Femtosecond optical Kerr studies on the origin of the nonlinear responses in simple liquids , 1988 .

[4]  A. Zheltikov,et al.  Spectral transformation of femtosecond Cr:forsterite laser pulses in a flint-glass photonic-crystal fiber. , 2006, Applied optics.

[5]  J. Canning,et al.  Water-core Fresnel fiber. , 2005, Optics express.

[6]  D Reid,et al.  Femtosecond soliton pulse delivery at 800nm wavelength in hollow-core photonic bandgap fibers. , 2004, Optics express.

[7]  Wei Zhang,et al.  Large dispersion properties and nonlinear effects in up/down doping honeycomb photonic crystal fiber , 2006 .

[8]  S. Kovalenko,et al.  The ultrafast optical Kerr effect in liquid fluoroform: an estimate of the collision-induced contribution , 2000 .

[9]  Kunimasa Saitoh,et al.  Finite-element analysis of birefringence and dispersion properties in actual and idealized holey-fiber structures. , 2003, Applied optics.

[10]  Harald Giessen,et al.  Theoretical design of a liquid-core photonic crystal fiber for supercontinuum generation. , 2006, Optics express.

[11]  F. Omenetto,et al.  Spectrally smooth supercontinuum from 350 nm to 3 mum in sub-centimeter lengths of soft-glass photonic crystal fibers. , 2006, Optics express.

[12]  L. Provino,et al.  Supercontinuum generation in air–silica microstructured fibers with nanosecond and femtosecond pulse pumping , 2002 .

[13]  J. Thøgersen,et al.  Initial steps of supercontinuum generation in photonic crystal fibers , 2003 .

[14]  Jean-Marc Blondy,et al.  Stimulated Raman scattering in an ethanol core microstructured optical fiber. , 2005, Optics express.

[15]  Knight,et al.  Photonic band gap guidance in optical fibers , 1998, Science.

[16]  R. Dąbrowski,et al.  Spectral properties of photonic liquid crystal fibers , 2007, SPIE Optics + Optoelectronics.