Knowledge production and the structure of collaboration networks in two scientific fields

In this paper the relationship between knowledge production and the structure of research networks in two scientific fields is assessed. We investigate whether knowledge production corresponds positively or negatively with different types of social network structure. We show that academic fields generate knowledge in different ways and that within the fields, different types of networks act as a stimulant for knowledge generation.

[1]  B. Kogut,et al.  Social Capital, Structural Holes and the Formation of an Industry Network , 1997 .

[2]  Dorothea Jansen,et al.  Netzwerkansätze in der Organisationsforschung , 2002 .

[3]  A. Elzinga The New Production of Knowledge. The Dynamics of Science and Research in Contemporary Societies , 1997 .

[4]  Martin Suter,et al.  Small World , 2002 .

[5]  M E Newman,et al.  Scientific collaboration networks. I. Network construction and fundamental results. , 2001, Physical review. E, Statistical, nonlinear, and soft matter physics.

[6]  Joachim Schummer,et al.  Multidisciplinarity, interdisciplinarity, and patterns of research collaboration in nanoscience and nanotechnology , 2004, Scientometrics.

[7]  A. Bonaccorsi,et al.  Proliferation dynamics in emerging sciences , 2007 .

[8]  J. Hilbe Negative Binomial Regression: Preface , 2007 .

[9]  Dorothea Jansen,et al.  Drittmittel als Performanzindikator der Wissenschaftlichen Forschung , 2007 .

[10]  Matthew Kearnes,et al.  Re)imaging nanotechnology. , 2006 .

[11]  Ezra W. Zuckerman,et al.  Why knowledge does not equal power: the network redundancy trade-off , 2008 .

[12]  D. Jansen,et al.  New Forms of Governance in Research Organizations , 2007 .

[13]  Renate Mayntz,et al.  Modernisierung und die Logik von interorganisatorischen Netzwerken , 1992 .

[14]  D. Price Little Science, Big Science , 1965 .

[15]  Donald de B. Beaver,et al.  Studies in scientific collaboration , 1978, Scientometrics.

[16]  Joachim Schummer,et al.  Discovering the nanoscale , 2004 .

[17]  Julio A. Fernández The transition from an individual science to a collective one: The case of astronomy , 1998, Scientometrics.

[18]  A. Wald,et al.  Governance Reforms and Scientific Production Evidence from German Astrophysics , 2007 .

[19]  Ismael Rafols,et al.  A global map of science based on the ISI subject categories , 2009, J. Assoc. Inf. Sci. Technol..

[20]  Cyrus C. M. Mody How Probe Microscopists Became Nanotechnologists , 2004 .

[21]  Mark S. Granovetter The Strength of Weak Ties , 1973, American Journal of Sociology.

[22]  Ulrich Schmoch,et al.  How to use indicators to measure scientific performance: a balanced approach , 2010 .

[23]  Daniel A. Levinthal,et al.  ABSORPTIVE CAPACITY: A NEW PERSPECTIVE ON LEARNING AND INNOVATION , 1990 .

[24]  R. Feynman There’s plenty of room at the bottom , 1992, Journal of Microelectromechanical Systems.

[25]  P. Macnaghten,et al.  Introduction: (Re)Imagining Nanotechnology , 2006 .

[26]  Merle Jacob,et al.  Managing the Institutionalisation of Mode 2 Knowledge Production , 2001 .

[27]  Sai Yayavaram,et al.  Decomposability in Knowledge Structures and Its Impact on the Usefulness of Inventions and Knowledge-base Malleability , 2008 .

[28]  R. Burt Structural Holes and Good Ideas1 , 2004, American Journal of Sociology.

[29]  Duncan J. Watts,et al.  Collective dynamics of ‘small-world’ networks , 1998, Nature.

[30]  Science and its Publics , 2008 .

[31]  H. V. Lente,et al.  Re-thinking new knowledge production: A literature review and a research agenda , 2008 .

[32]  T. Kuhn,et al.  The Structure of Scientific Revolutions. , 1964 .

[33]  Andrea Bonaccorsi,et al.  Explaining poor performance of European science: Institutions versus policies , 2007 .

[34]  Ricky Leung Network Position, Research Funding and Interdisciplinary Collaboration among Nanotechnology Scientists: An Application of Social Network Analysis , 2007 .

[35]  J. Coleman,et al.  Social Capital in the Creation of Human Capital , 1988, American Journal of Sociology.

[36]  P. Blau Inequality and Heterogeneity: A Primitive Theory of Social Structure , 1978 .

[37]  Ronald S. Burt,et al.  Information and structural holes: comment on Reagans and Zuckerman , 2008 .

[38]  Tibor Braun,et al.  Nanoscience and nanotecnology on the balance , 1997, Scientometrics.

[39]  Wolfgang Glänzel,et al.  An item-by-item subject classification of papers published in journals covered by the SSCI database using reference analysis , 2006, Scientometrics.

[40]  M. Markus,et al.  Oscillations and turbulence induced by an activating agent in an active medium. , 2001, Physical review. E, Statistical, nonlinear, and soft matter physics.

[41]  Thomas Heinze,et al.  Characterizing creative scientists in nano-S&T: Productivity, multidisciplinarity, and network brokerage in a longitudinal perspective , 2007, Scientometrics.

[42]  Ramya B. Nagaraja Converging Technologies for Improving Human Performance , 2004 .

[43]  A. Wald,et al.  Möglichkeiten der Triangulation quantitativer und qualitativer Methoden in der Netzwerkanalyse , 2006 .

[44]  Richard Heidler,et al.  Is Nanoscience a Mode 2 Field? Disciplinary Differences in Modes of Knowledge Production , 2010 .

[45]  T. Kuhn,et al.  The Copernican revolution , 2021, Our Celestial Clockwork.

[46]  G. Ahuja Collaboration Networks, Structural Holes, and Innovation: A Longitudinal Study , 1998 .

[47]  W. Patrick McCray Large Telescopes and the Moral Economy of Recent Astronomy , 2000 .

[48]  T. K. Chandra Bhanu,et al.  Nanoscience and Technology , 2010 .

[49]  A. Bonaccorsi Search Regimes and the Industrial Dynamics of Science , 2008 .

[50]  Donald de B. Beaver,et al.  Studies in scientific collaboration , 2005, Scientometrics.