COPA: Constrained PARAFAC2 for Sparse & Large Datasets
暂无分享,去创建一个
Jimeng Sun | Elizabeth Searles | Evangelos E. Papalexakis | Ardavan Afshar | Joyce C. Ho | Ioakeim Perros
[1] Jimeng Sun,et al. Federated Tensor Factorization for Computational Phenotyping , 2017, KDD.
[2] Richard A. Harshman,et al. Foundations of the PARAFAC procedure: Models and conditions for an "explanatory" multi-model factor analysis , 1970 .
[3] Nathaniel E. Helwig,et al. Estimating latent trends in multivariate longitudinal data via Parafac2 with functional and structural constraints , 2017, Biometrical journal. Biometrische Zeitschrift.
[4] Gene H. Golub,et al. Matrix computations , 1983 .
[5] Jimeng Sun,et al. MetaFac: community discovery via relational hypergraph factorization , 2009, KDD.
[6] Christos Faloutsos,et al. FUNNEL: automatic mining of spatially coevolving epidemics , 2014, KDD.
[7] J. Chang,et al. Analysis of individual differences in multidimensional scaling via an n-way generalization of “Eckart-Young” decomposition , 1970 .
[8] Barry M. Wise,et al. Application of PARAFAC2 to fault detection and diagnosis in semiconductor etch , 2001 .
[9] J. Ramsay. Monotone Regression Splines in Action , 1988 .
[10] Tamara G. Kolda,et al. Efficient MATLAB Computations with Sparse and Factored Tensors , 2007, SIAM J. Sci. Comput..
[11] Vaidy S. Sunderam,et al. CP-ORTHO: An Orthogonal Tensor Factorization Framework for Spatio-Temporal Data , 2017, SIGSPATIAL/GIS.
[12] Jimeng Sun,et al. Marble: high-throughput phenotyping from electronic health records via sparse nonnegative tensor factorization , 2014, KDD.
[13] P. Schönemann,et al. A generalized solution of the orthogonal procrustes problem , 1966 .
[14] Tamara G. Kolda,et al. Link Prediction on Evolving Data Using Matrix and Tensor Factorizations , 2009, 2009 IEEE International Conference on Data Mining Workshops.
[15] Jimeng Sun,et al. SUSTain: Scalable Unsupervised Scoring for Tensors and its Application to Phenotyping , 2018, KDD.
[16] Tamara G. Kolda,et al. Cross-language information retrieval using PARAFAC2 , 2007, KDD '07.
[17] Stephen P. Boyd,et al. Proximal Algorithms , 2013, Found. Trends Optim..
[18] R. Bro,et al. PARAFAC2—Part I. A direct fitting algorithm for the PARAFAC2 model , 1999 .
[19] V. N. Slee,et al. The International Classification of Diseases: ninth revision (ICD-9) , 1978, Annals of internal medicine.
[20] Claus A. Andersson,et al. PARAFAC2—Part II. Modeling chromatographic data with retention time shifts , 1999 .
[21] Nikos D. Sidiropoulos,et al. A Flexible and Efficient Algorithmic Framework for Constrained Matrix and Tensor Factorization , 2015, IEEE Transactions on Signal Processing.
[22] Jimeng Sun,et al. Rubik: Knowledge Guided Tensor Factorization and Completion for Health Data Analytics , 2015, KDD.
[23] Jimeng Sun,et al. Limestone: High-throughput candidate phenotype generation via tensor factorization , 2014, J. Biomed. Informatics.
[24] Marieke E. Timmerman,et al. Three-way component analysis with smoothness constraints , 2002 .
[25] R. Harshman. The differences between analysis of covariance and correlation , 2001 .
[26] Fei Wang,et al. SPARTan: Scalable PARAFAC2 for Large & Sparse Data , 2017, KDD.
[27] Frank H. Clarke,et al. A New Approach to Lagrange Multipliers , 1976, Math. Oper. Res..