Low thermal conductivity oxides

Oxides hold great promise as new and improved materials for thermal-barrier coating applications. The rich variety of structures and compositions of the materials in this class, and the ease with which they can be doped, allow the exploration of various mechanisms for lowering thermal conductivity. In this article, we review recent progress in identifying specific oxides with low thermal conductivity from both theoretical and experimental perspectives. We explore the mechanisms of lowering thermal conductivity, such as introducing structural/chemical disorder, increasing material density, increasing the number of atoms in the primitive cell, and exploiting the structural anisotropy. We conclude that further systematic exploration of oxide crystal structures and chemistries are likely to result in even further improved thermal-barrier coatings.

[1]  Dongming Zhu,et al.  Development of Advanced Low Conductivity Thermal Barrier Coatings , 2005 .

[2]  Jaroslav Fabian,et al.  Diffusons, locons and propagons: Character of atomie yibrations in amorphous Si , 1999 .

[3]  Fen Zhou,et al.  Influence of the partial substitution of Y2O3 with Ln2O3 (Ln = Nd, Sm, Gd) on the phase structure and thermophysical properties of ZrO2-Nb2O5-Y2O3 ceramics , 2011 .

[4]  C. Levi Emerging materials and processes for thermal barrier systems , 2004 .

[5]  W. Pan,et al.  Thermal Expansion and Defect Chemistry of MgO-Doped Sm2Zr2O7 , 2007 .

[6]  M. Mayo,et al.  Ta2O5/Nb2O5 and Y2O3 Co‐doped Zirconias for Thermal Barrier Coatings , 2004 .

[7]  Robert Vassen,et al.  Zirconates as New Materials for Thermal Barrier Coatings , 2004 .

[8]  David R. Clarke,et al.  Crossover in Thermal Transport Properties of Natural, Perovskite-Structured Superlattices , 2009 .

[9]  Wei Zhang,et al.  Glass-like thermal conductivity in ytterbium-doped lanthanum zirconate pyrochlore , 2010 .

[10]  M. Mayo,et al.  Thermal properties of zirconia co-doped with trivalent and pentavalent oxides , 2001 .

[11]  R. Mitchell Perovskites: Modern and Ancient , 2003 .

[12]  W. Pan,et al.  Rare‐Earth Zirconate Ceramics with Fluorite Structure for Thermal Barrier Coatings , 2006 .

[13]  Xiao-Chuan Wang,et al.  Low‐Temperature Sintering and Electrical Properties of ZnO–Bi2O3–TiO2–Co2O3–MnCO3‐Based Varistor with Bi2O3–B2O3 Frit for Multilayer Chip Varistor Applications , 2010 .

[14]  W. Pan,et al.  Thermophysical properties of rare-earth stannates: Effect of pyrochlore structure , 2012 .

[15]  W. Pan,et al.  Thermal Conductivity of Monazite-Type REPO4 (RE=La, Ce, Nd, Sm, Eu, Gd) , 2009 .

[16]  W. Pan,et al.  Thermal conductivity of ytterbia-stabilized zirconia , 2012 .

[17]  Wei Pan,et al.  Order–Disorder Transition and Unconventional Thermal Conductivities of the (Sm1−xYbx)2Zr2O7 Series , 2011 .

[18]  Rafael M. Leckie,et al.  Low thermal conductivity without oxygen vacancies in equimolar YO1.5 + TaO2.5- and YbO1.5 + TaO2.5-stabilized tetragonal zirconia ceramics , 2010 .

[19]  Simon R. Phillpot,et al.  Mechanism of thermal transport in zirconia and yttria-stabilized zirconia by molecular-dynamics simulation. , 2001 .

[20]  R. Grimes,et al.  Optimum pyrochlore compositions for low thermal conductivity , 2004 .

[21]  W. Pan,et al.  Ultralow thermal conductivity in highly anion-defective aluminates. , 2008, Physical review letters.

[22]  F. Tietz,et al.  Lanthanum–Cerium Oxide as a Thermal Barrier‐Coating Material for High‐Temperature Applications , 2003 .

[23]  D. Stöver,et al.  Application of Plasma-Sprayed Complex Perovskites as Thermal Barrier Coatings , 2009 .

[24]  Hongbo Guo,et al.  Thermo-physical and thermal cycling properties of plasma-sprayed BaLa2Ti3O10 coating as potential thermal barrier materials , 2009 .

[25]  Hsin Wang,et al.  Phase stability, sintering, and thermal conductivity of plasma-sprayed ZrO2–Gd2O3 compositions for potential thermal barrier coating applications , 2006 .

[26]  D. Stöver,et al.  Atmospheric Plasma Spraying of High Melting Temperature Complex Perovskites for TBC Application , 2009, International Thermal Spray Conference.

[27]  Wei Pan,et al.  Thermal conductivity of the gadolinium calcium silicate apatites: Effect of different point defect types , 2011 .

[28]  W. Pan,et al.  Effects of Texture on the Thermal Conductivity of the LaPO4 Monazite , 2010 .

[29]  David R. Clarke,et al.  Oxide materials with low thermal conductivity , 2007 .

[30]  D. Clarke,et al.  High temperature aging of YSZ coatings and subsequent transformation at low temperature , 2005 .

[31]  N. Padture,et al.  Low‐Thermal‐Conductivity Rare‐Earth Zirconates for Potential Thermal‐Barrier‐Coating Applications , 2004 .

[32]  Robert Vassen,et al.  Thermal Conductivity and Thermal Expansion Coefficients of the Lanthanum Rare‐Earth‐Element Zirconate System , 2003 .

[33]  D. Stöver,et al.  New Generation Perovskite Thermal Barrier Coating Materials , 2008, International Thermal Spray Conference.

[34]  R. Siegel,et al.  Analysis of thermal radiation effects on temperatures in turbine engine thermal barrier coatings , 1998 .

[35]  D. Stöver,et al.  Overview on advanced thermal barrier coatings , 2010 .

[36]  Joseph Callaway,et al.  Effect of Point Imperfections on Lattice Thermal Conductivity , 1960 .

[37]  James S. Tulenko,et al.  Thermal Transport in Off‐Stoichiometric Uranium Dioxide by Atomic Level Simulation , 2009 .

[38]  S. Sodeoka,et al.  Thermal and mechanical properties of ZrO2-CeO2 plasma-sprayed coatings , 1997 .

[39]  D. Stöver,et al.  Perovskite-Type Strontium Zirconate as a New Material for Thermal Barrier Coatings , 2008 .

[40]  Robert Vaßen,et al.  Development of a micromechanical life prediction model for plasma sprayed thermal barrier coatings , 2001 .