3D saturation recovery imaging for free breathing myocardial T1 mapping

Background Longitudinal magnetization relaxation time (T1) mapping can overcome limitations of late gadolinium enhancement for the detection of diffuse fibrosis in the myocardium. Several T1 mapping methods have been proposed in recent years; however most of them are limited to 2D breath-hold acquisitions with associated limitations in signal-to-noise ratio (SNR) and spatial resolution. A MOdified Look-Locker Inversion recovery (MOLLI) approach has been widely used, however systematic T1 errors have been reported which can be overcome by using a Saturation recovery single SHot Acquisition (SASHA). In this work, we extend the 2D SASHA to 3D using a 1D diaphragmatic navigator for respiratory motion correction and segmented k-space acquisitions. The proposed free breathing 3D SASHA method was compared to breathhold 2D SASHA and 2D MOLLI in healthy volunteers.