Journal of Machine Learning Research X (2008) 1-34 Submitted 01/08; Revised 08/08; Published XX/XX
暂无分享,去创建一个
[1] N. Aronszajn. Theory of Reproducing Kernels. , 1950 .
[2] G. Wahba. Spline models for observational data , 1990 .
[3] Alexander J. Smola,et al. Support Vector Method for Function Approximation, Regression Estimation and Signal Processing , 1996, NIPS.
[4] Claude Lemaréchal,et al. Practical Aspects of the Moreau-Yosida Regularization: Theoretical Preliminaries , 1997, SIAM J. Optim..
[5] Thorsten Joachims,et al. Making large scale SVM learning practical , 1998 .
[6] Yves Grandvalet,et al. Outcomes of the Equivalence of Adaptive Ridge with Least Absolute Shrinkage , 1998, NIPS.
[7] Alexander J. Smola,et al. Learning with kernels , 1998 .
[8] Catherine Blake,et al. UCI Repository of machine learning databases , 1998 .
[9] Yves Grandvalet. Least Absolute Shrinkage is Equivalent to Quadratic Penalization , 1998 .
[10] Kiri Wagstaff,et al. Alpha seeding for support vector machines , 2000, KDD '00.
[11] Jianqing Fan,et al. Regularization of Wavelet Approximations , 2001 .
[12] Koby Crammer,et al. On the Algorithmic Implementation of Multiclass Kernel-based Vector Machines , 2002, J. Mach. Learn. Res..
[13] Yves Grandvalet,et al. Adaptive Scaling for Feature Selection in SVMs , 2002, NIPS.
[14] Jean Charles Gilbert,et al. Numerical Optimization: Theoretical and Practical Aspects , 2003 .
[15] Michael I. Jordan,et al. Computing regularization paths for learning multiple kernels , 2004, NIPS.
[16] Nello Cristianini,et al. Learning the Kernel Matrix with Semidefinite Programming , 2002, J. Mach. Learn. Res..
[17] Michael I. Jordan,et al. Multiple kernel learning, conic duality, and the SMO algorithm , 2004, ICML.
[18] Nello Cristianini,et al. A statistical framework for genomic data fusion , 2004, Bioinform..
[19] D. Madigan,et al. [Least Angle Regression]: Discussion , 2004 .
[20] Ryan M. Rifkin,et al. In Defense of One-Vs-All Classification , 2004, J. Mach. Learn. Res..
[21] Saharon Rosset,et al. Tracking Curved Regularized Optimization Solution Paths , 2004, NIPS 2004.
[22] Robert Tibshirani,et al. The Entire Regularization Path for the Support Vector Machine , 2004, J. Mach. Learn. Res..
[23] Murat Dundar,et al. A fast iterative algorithm for fisher discriminant using heterogeneous kernels , 2004, ICML.
[24] Charles A. Micchelli,et al. Learning the Kernel Function via Regularization , 2005, J. Mach. Learn. Res..
[25] Stéphane Canu,et al. Frames, Reproducing Kernels, Regularization and Learning , 2005, J. Mach. Learn. Res..
[26] S. Sathiya Keerthi,et al. Which Is the Best Multiclass SVM Method? An Empirical Study , 2005, Multiple Classifier Systems.
[27] Alexander J. Smola,et al. Boîte à outils SVM simple et rapide , 2005, Rev. d'Intelligence Artif..
[28] Thomas Hofmann,et al. Large Margin Methods for Structured and Interdependent Output Variables , 2005, J. Mach. Learn. Res..
[29] S. Canu,et al. Non‐parametric regression with wavelet kernels , 2005 .
[30] Stephen P. Boyd,et al. Convex Optimization , 2004, Algorithms and Theory of Computation Handbook.
[31] Anestis Antoniadis,et al. Wavelet kernel penalized estimation for non-equispaced design regression , 2006, Stat. Comput..
[32] Gunnar Rätsch,et al. Large Scale Multiple Kernel Learning , 2006, J. Mach. Learn. Res..
[33] Stephen P. Boyd,et al. Optimal kernel selection in Kernel Fisher discriminant analysis , 2006, ICML.
[34] Zaïd Harchaoui,et al. Image Classification with Segmentation Graph Kernels , 2007, 2007 IEEE Conference on Computer Vision and Pattern Recognition.
[35] Stéphane Canu,et al. Comments on the "Core Vector Machines: Fast SVM Training on Very Large Data Sets" , 2007, J. Mach. Learn. Res..
[36] Cheng Soon Ong,et al. Multiclass multiple kernel learning , 2007, ICML '07.
[37] Massimiliano Pontil,et al. Convex multi-task feature learning , 2008, Machine Learning.
[38] Yves Grandvalet,et al. More efficiency in multiple kernel learning , 2007, ICML '07.
[39] Stephen P. Boyd,et al. An Interior-Point Method for Large-Scale l1-Regularized Logistic Regression , 2007, J. Mach. Learn. Res..
[40] Francis R. Bach,et al. Consistency of the group Lasso and multiple kernel learning , 2007, J. Mach. Learn. Res..
[41] Alexandre d'Aspremont,et al. Smooth Optimization with Approximate Gradient , 2005, SIAM J. Optim..
[42] Shigeo Abe,et al. Multiclass Support Vector Machines , 2010 .
[43] K. Schittkowski,et al. NONLINEAR PROGRAMMING , 2022 .