One-shot set-membership identification of Generalized Hammerstein-Wiener systems

Abstract In this paper we consider the identification of Generalized Hammerstein–Wiener systems in the presence of bounded noise affecting both the input and the output sequences. The considered class of systems is characterized by the cascade connection of Hammerstein building blocks, where the nonlinear static input map is a polynomial, which is not assumed to be invertible. The problem of computing the parameter uncertainty intervals is formulated in terms of a set of suitable semialgebraic optimization problems, where both the parameter to be estimated and the inner unmeasurable signals connecting all the subsystems are considered as decision variables. The effectiveness of the proposed algorithm is shown by means of a numerical simulation example. The presented approach is also applied to the problem of identifying the mathematical model of a JFET amplifier from a set of experimentally collected data.

[1]  Er-Wei Bai,et al.  Identification of a modified Wiener-Hammerstein system and its application in electrically stimulated paralyzed skeletal muscle modeling , 2009, Autom..

[2]  Brett Ninness,et al.  Generalised Hammerstein–Wiener system estimation and a benchmark application , 2012 .

[3]  Dario Piga,et al.  Set-Membership Error-in-Variables Identification Through Convex Relaxation Techniques , 2012, IEEE Transactions on Automatic Control.

[4]  Pablo A. Parrilo,et al.  Semidefinite programming relaxations for semialgebraic problems , 2003, Math. Program..

[5]  M. J. Korenberg,et al.  The identification of nonlinear biological systems: Wiener and Hammerstein cascade models , 1986, Biological Cybernetics.

[6]  Michel Verhaegen,et al.  Recursive subspace identification of linear and non-linear Wiener state-space models , 2000, Autom..

[7]  Laura Giarré,et al.  Identification of approximated hammerstein models in a worst-case setting , 2002, IEEE Trans. Autom. Control..

[8]  Vito Cerone,et al.  Parameter bounds evaluation of Wiener models with noninvertible polynomial nonlinearities , 2006, Autom..

[9]  Wlodzimierz Greblicki,et al.  Nonparametric identification of Wiener systems , 1992, IEEE Trans. Inf. Theory.

[10]  Michel Verhaegen,et al.  Identifying MIMO Wiener systems using subspace model identification methods , 1996, Signal Process..

[11]  A. Garulli,et al.  Block recursive parallelotopic bounding in set membership identification , 1998 .

[12]  Jean B. Lasserre,et al.  Convergent SDP-Relaxations in Polynomial Optimization with Sparsity , 2006, SIAM J. Optim..

[13]  Dario Piga,et al.  Bounding the parameters of block‐structured nonlinear feedback systems , 2013 .

[14]  R. Tempo,et al.  Optimality of central and projection algorithms for bounded uncertainty , 1986 .

[15]  Ian W. Hunter,et al.  Two Methods for Identifying Wiener Cascades Having Noninvertible Static Nonlinearities , 1999, Annals of Biomedical Engineering.

[16]  Antonio Vicino,et al.  Optimal estimation theory for dynamic systems with set membership uncertainty: An overview , 1991, Autom..

[17]  Jean B. Lasserre,et al.  Global Optimization with Polynomials and the Problem of Moments , 2000, SIAM J. Optim..

[18]  Johan Schoukens,et al.  Initial estimates of Wiener and Hammerstein systems using multisine excitation , 2001, IEEE Trans. Instrum. Meas..

[19]  Er-Wei Bai An optimal two-stage identification algorithm for Hammerstein-Wiener nonlinear systems , 1998, Autom..

[20]  Feng Ding,et al.  Least squares based and gradient based iterative identification for Wiener nonlinear systems , 2011, Signal Process..

[21]  E. Walter,et al.  Estimation of parameter bounds from bounded-error data: a survey , 1990 .

[22]  Grzegorz Mzyk,et al.  Kernel-based identification of Wiener-Hammerstein system , 2017, Autom..

[23]  Andrea Garulli,et al.  Conditional central algorithms for worst case set-membership identification and filtering , 2000, IEEE Trans. Autom. Control..

[24]  Masakazu Muramatsu,et al.  SparsePOP: a Sparse Semidefinite Programming Relaxation of Polynomial Optimization Problems , 2005 .

[25]  R. Pearson,et al.  Gray-box identification of block-oriented nonlinear models , 2000 .

[26]  V. Cerone,et al.  Bounded error identification of Hammerstein systems through sparse polynomial optimization , 2012, Autom..

[27]  Masakazu Kojima,et al.  Sparsity in sums of squares of polynomials , 2005, Math. Program..

[28]  M. Marshall,et al.  Representations of Non-Negative Polynomials, Degree Bounds and Applications to Optimization , 2009, Canadian Journal of Mathematics.

[29]  Y. F. Huang,et al.  On the value of information in system identification - Bounded noise case , 1982, Autom..

[30]  Dario Piga,et al.  Improved parameter bounds for set‐membership EIV problems , 2011 .

[31]  Antonio Vicino,et al.  Conditionally optimal algorithms and estimation of reduced order models , 1988, J. Complex..

[32]  Giuseppe Giordano,et al.  An improved method for Wiener-Hammerstein system identification based on the Fractional Approach , 2018, Autom..

[33]  Graziano Chesi,et al.  Solving quadratic distance problems: an LMI-based approach , 2003, IEEE Trans. Autom. Control..

[34]  Didier Henrion,et al.  GloptiPoly 3: moments, optimization and semidefinite programming , 2007, Optim. Methods Softw..

[35]  Torbjörn Wigren,et al.  Recursive prediction error identification using the nonlinear wiener model , 1993, Autom..

[36]  Andrea Garulli,et al.  Tight error bounds for projection algorithms in conditional set membership estimation , 1999 .

[37]  Mario Sznaier,et al.  Computational complexity analysis of set membership identification of Hammerstein and Wiener systems , 2009, Autom..

[38]  Vito Cerone,et al.  Parameter bounds for discrete-time Hammerstein models with bounded output errors , 2003, IEEE Trans. Autom. Control..

[39]  R. Luus,et al.  A noniterative method for identification using Hammerstein model , 1971 .

[40]  Le Yi Wang,et al.  Identification of Wiener systems with binary-valued output observations , 2007, Autom..

[41]  Torbjörn Wigren,et al.  Output error convergence of adaptive filters with compensation for output nonlinearities , 1998, IEEE Trans. Autom. Control..

[42]  M. J. Korenberg,et al.  The identification of nonlinear biological systems: LNL cascade models , 1986, Biological Cybernetics.

[43]  Thomas L. Floyd Electronic Devices: Conventional Current Version , 2008 .

[44]  Lennart Ljung,et al.  Nonlinear black-box modeling in system identification: a unified overview , 1995, Autom..

[45]  J. Lasserre Moments, Positive Polynomials And Their Applications , 2009 .

[46]  Jos F. Sturm,et al.  A Matlab toolbox for optimization over symmetric cones , 1999 .

[47]  Er-Wei Bai Frequency domain identification of Wiener models , 2003, Autom..

[48]  Jiawang Nie,et al.  Optimality conditions and finite convergence of Lasserre’s hierarchy , 2012, Math. Program..