Digital Nets and Sequences: Discrepancy Theory and Quasi-Monte Carlo Integration

Indispensable for students, invaluable for researchers, this comprehensive treatment of contemporary quasi-Monte Carlo methods, digital nets and sequences, and discrepancy theory starts from scratch with detailed explanations of the basic concepts and then advances to current methods used in research. As deterministic versions of the Monte Carlo method, quasi-Monte Carlo rules have increased in popularity, with many fruitful applications in mathematical practice. These rules require nodes with good uniform distribution properties, and digital nets and sequences in the sense of Niederreiter are known to be excellent candidates. Besides the classical theory, the book contains chapters on reproducing kernel Hilbert spaces and weighted integration, duality theory for digital nets, polynomial lattice rules, the newest constructions by Niederreiter and Xing and many more. The authors present an accessible introduction to the subject based mainly on material taught in undergraduate courses with numerous examples, exercises and illustrations.

[1]  S. R. Simanca,et al.  On Circulant Matrices , 2012 .

[2]  Fred J. Hickernell,et al.  Weighted compound integration rules with higher order convergence for all N , 2012, Numerical Algorithms.

[3]  Magnus Wahlström,et al.  Algorithmic construction of low-discrepancy point sets via dependent randomized rounding , 2010, J. Complex..

[4]  E. Novak,et al.  Tractability of Multivariate Problems Volume II: Standard Information for Functionals , 2010 .

[5]  H. Triebel Bases in Function Spaces, Sampling, Discrepancy, Numerical Integration , 2010 .

[6]  Peter Kritzer,et al.  Duality theory and propagation rules for generalized digital nets , 2010, Math. Comput..

[7]  Friedrich Pillichshammer,et al.  L_2 discrepancy of generalized two-dimensional Hammersley point sets scrambled with arbitrary permutations , 2010 .

[8]  Harald Niederreiter,et al.  Duality for digital sequences , 2009, J. Complex..

[9]  Josef Dick,et al.  QMC Rules of Arbitrary High Order: Reproducing Kernel Hilbert Space Approach , 2009 .

[10]  Harald Niederreiter,et al.  Algebraic Geometry in Coding Theory and Cryptography , 2009 .

[11]  Friedrich Pillichshammer,et al.  Lp discrepancy of generalized two-dimensional Hammersley point sets , 2009 .

[12]  Harald Niederreiter,et al.  Construction Algorithms for Good Extensible Lattice Rules , 2009 .

[13]  J. Dick THE DECAY OF THE WALSH COEFFICIENTS OF SMOOTH FUNCTIONS , 2009, Bulletin of the Australian Mathematical Society.

[14]  Anand Srivastav,et al.  Finding optimal volume subintervals with k points and calculating the star discrepancy are NP-hard problems , 2009, J. Complex..

[15]  C. Lemieux Monte Carlo and Quasi-Monte Carlo Sampling , 2009 .

[16]  Pierre L'Ecuyer,et al.  Quasi-Monte Carlo methods with applications in finance , 2008, Finance Stochastics.

[17]  Wolfgang Ch. Schmid,et al.  MINT – New Features and New Results , 2009 .

[18]  THE QUALITY PARAMETER OF CYCLIC NETS AND HYPERPLANE NETS , 2009 .

[19]  Friedrich Pillichshammer,et al.  Discrepancy of Hyperplane Nets and Cyclic Nets , 2009 .

[20]  Duality Theory and Propagation Rules for Generalized Nets , 2009 .

[21]  F. Pillichshammer,et al.  Construction Algorithms for Generalized Polynomial Lattice Rules , 2009 .

[22]  Josef Dick,et al.  Equidistribution Properties of Generalized Nets and Sequences , 2009 .

[23]  Josef Dick,et al.  On Quasi-Monte Carlo Rules Achieving Higher Order Convergence , 2009 .

[24]  Magnus Wahlström,et al.  Implementation of a Component-By-Component Algorithm to Generate Small Low-Discrepancy Samples , 2009 .

[25]  Friedrich Pillichshammer,et al.  L2 Discrepancy of Two-Dimensional Digitally Shifted Hammersley Point Sets in Base b , 2009 .

[26]  E. Novak,et al.  L 2 discrepancy and multivariate integration , 2009 .

[27]  Harald Niederreiter,et al.  On the exact t-value of Niederreiter and Sobol' sequences , 2008, J. Complex..

[28]  Frances Y. Kuo,et al.  Constructing Sobol Sequences with Better Two-Dimensional Projections , 2008, SIAM J. Sci. Comput..

[29]  Josef Dick,et al.  The construction of good extensible rank-1 lattices , 2008, Math. Comput..

[30]  Michael Gnewuch Bracketing numbers for axis-parallel boxes and applications to geometric discrepancy , 2008, J. Complex..

[31]  Aicke Hinrichs,et al.  Tractability properties of the weighted star discrepancy , 2008, J. Complex..

[32]  Josef Dick,et al.  Walsh Spaces Containing Smooth Functions and Quasi-Monte Carlo Rules of Arbitrary High Order , 2008, SIAM J. Numer. Anal..

[33]  Harald Niederreiter,et al.  Nets, (t, s)-Sequences, and Codes , 2008 .

[34]  William W. L. Chen,et al.  Orthogonality and Digit Shifts in the Classical Mean Squares Problem in Irregularities of Point Distribution , 2008 .

[35]  Stephen Joe,et al.  Good Lattice Rules with a Composite Number of Points Based on the Product Weighted Star Discrepancy , 2008 .

[36]  Peter Kritzer,et al.  Component-by-component construction of low-discrepancy point sets of small size , 2008, Monte Carlo Methods Appl..

[37]  Benjamin Doerr,et al.  Construction of Low-Discrepancy Point Sets of Small Size by Bracketing Covers and Dependent Randomized Rounding , 2008 .

[38]  STAR EXTREME DISCREPANCY OF GENERALIZED TWO-DIMENSIONAL HAMMERSLEY POINT SETS , 2008 .

[39]  Peter Kritzer,et al.  Constructions of general polynomial lattice rules based on the weighted star discrepancy , 2007, Finite Fields Their Appl..

[40]  Josef Dick,et al.  The construction of extensible polynomial lattice rules with small weighted star discrepancy , 2007, Math. Comput..

[41]  Peter Kritzer,et al.  Constructions of general polynomial lattices for multivariate integration , 2007, Bulletin of the Australian Mathematical Society.

[42]  Peter Kritzer,et al.  On the existence of higher order polynomial lattices based on a generalized figure of merit , 2007, J. Complex..

[43]  Josef Dick,et al.  Strong tractability of multivariate integration of arbitrary high order using digitally shifted polynomial lattice rules , 2007, J. Complex..

[44]  Josef Dick,et al.  Explicit Constructions of Quasi-Monte Carlo Rules for the Numerical Integration of High-Dimensional Periodic Functions , 2007, SIAM J. Numer. Anal..

[45]  M. Lacey,et al.  On the Small Ball Inequality in All Dimensions , 2007, 0705.4619.

[46]  Jürgen Hartinger,et al.  On Corner Avoidance Properties of Random-Start Halton Sequences , 2007, SIAM J. Numer. Anal..

[47]  Dirk Nuyens Fast construction of good lattice rules , 2007 .

[48]  Peter Kritzer,et al.  A thorough analysis of the discrepancy of shifted Hammersley and van der Corput point sets , 2007 .

[49]  Josef Dick,et al.  The tent transformation can improve the convergence rate of quasi-Monte Carlo algorithms using digital nets , 2006, Numerische Mathematik.

[50]  H. Faure,et al.  Van der Corput sequences towards general (0,1)–sequences in base b , 2007 .

[51]  Frances Y. Kuo,et al.  Constructing Embedded Lattice Rules for Multivariate Integration , 2006, SIAM J. Sci. Comput..

[52]  M. Skriganov Harmonic analysis on totally disconnected groups and irregularities of point distributions , 2006 .

[53]  Josef Dick,et al.  On the mean square weighted L2 discrepancy of randomized digital nets in prime base , 2006, J. Complex..

[54]  M. Lacey,et al.  On the small ball inequality in three dimensions , 2006, math/0609815.

[55]  Dirk Nuyens,et al.  Fast Component-by-Component Construction, a Reprise for Different Kernels , 2006 .

[56]  Peter Kritzer,et al.  Improved upper bounds on the star discrepancy of (t, m, s)-nets and (t, s)-sequences , 2006, J. Complex..

[57]  Peter Kritzer,et al.  A best possible upper bound on the star discrepancy of (t, m, 2)-nets , 2006, Monte Carlo Methods Appl..

[58]  Josef Dick,et al.  Cyclic Digital Nets, Hyperplane Nets, and Multivariate Integration in Sobolev Spaces , 2006, SIAM J. Numer. Anal..

[59]  Dirk Nuyens,et al.  Fast algorithms for component-by-component construction of rank-1 lattice rules in shift-invariant reproducing kernel Hilbert spaces , 2006, Math. Comput..

[60]  Peter Kritzer,et al.  An exact formula for the L_2 discrepancy of the shifted Hammersley point set , 2006 .

[61]  Peter Kritzer On the Star Discrepancy of Digital Nets and Sequences in Three Dimensions , 2006 .

[62]  Alexander Keller,et al.  Myths of Computer Graphics , 2006 .

[63]  Wolfgang Ch. Schmid,et al.  MinT: A Database for Optimal Net Parameters , 2006 .

[64]  Harald Niederreiter,et al.  Weighted Star Discrepancy of Digital Nets in Prime Bases , 2006 .

[65]  S. Joe Construction of Good Rank-1 Lattice Rules Based on the Weighted Star Discrepancy , 2006 .

[66]  P. Hellekalek,et al.  Dyadic Diaphony , 2006 .

[67]  A. Owen Local antithetic sampling with scrambled nets , 2008, 0811.0528.

[68]  Peter Kritzer,et al.  Star discrepancy estimates for digital (t, m, 2)-nets and digital (t, 2) -sequences over Z2 , 2005 .

[69]  Anand Srivastav,et al.  Bounds and constructions for the star-discrepancy via ?-covers , 2005, J. Complex..

[70]  Michael Drmota,et al.  Precise distribution properties of the van der Corput sequence and related sequences , 2005 .

[71]  Harald Niederreiter,et al.  Constructions of (t, m, s)-nets and (t, s)-sequences , 2005, Finite Fields Their Appl..

[72]  Frances Y. Kuo,et al.  Construction algorithms for polynomial lattice rules for multivariate integration , 2005, Math. Comput..

[73]  Josef Dick,et al.  Multivariate integration in weighted Hilbert spaces based on Walsh functions and weighted Sobolev spaces , 2005, J. Complex..

[74]  Fred J. Hickernell,et al.  Strong tractability of integration using scrambled Niederreiter points , 2005, Math. Comput..

[75]  Josef Dick,et al.  On the mean square weighted ℒ₂ discrepancy of randomized digital (t,m,s)-nets over ℤ₂ , 2005 .

[76]  G. Pirsic A Small Taxonomy of Integration Node Sets , 2005 .

[77]  Josef Dick,et al.  Construction Algorithms for Digital Nets with Low Weighted Star Discrepancy , 2005, SIAM J. Numer. Anal..

[78]  Henri Faure IRREGULARITIES OF DISTRIBUTION OF DIGITAL (0,1)-SEQUENCES IN PRIME BASE , 2005 .

[79]  Henri Faure Discrepancy and diaphony of digital (0,1)-sequences in prime base , 2005 .

[80]  Henryk Wozniakowski,et al.  Liberating the weights , 2004, J. Complex..

[81]  Aicke Hinrichs,et al.  Covering numbers, Vapnik-ervonenkis classes and bounds for the star-discrepancy , 2004, J. Complex..

[82]  Josef Dick On the convergence rate of the component-by-component construction of good lattice rules , 2004, J. Complex..

[83]  Harald Niederreiter,et al.  Matrix-product constructions of digital nets , 2004, Finite Fields Their Appl..

[84]  Harald Niederreiter,et al.  Digital Nets and Coding Theory , 2004 .

[85]  A. Owen Quasi-Monte Carlo for integrands with point singularities at unknown locations , 2004 .

[86]  H. Niederreiter,et al.  Digital Nets, Duality, and Algebraic Curves , 2004 .

[87]  S. Joe Component by Component Construction of Rank-1 Lattice Rules HavingO(n-1(In(n))d) Star Discrepancy , 2004 .

[88]  Walsh Series Analysis of the Star Discrepancy of Digital Nets and Sequences , 2004 .

[89]  Fred J. Hickernell,et al.  Optimal quadrature for Haar wavelet spaces , 2004, Math. Comput..

[90]  Shu Tezuka,et al.  I-binomial scrambling of digital nets and sequences , 2003, J. Complex..

[91]  Harald Niederreiter,et al.  The Existence of Good Extensible Polynomial Lattice Rules , 2003 .

[92]  Wei-Liem Loh On the asymptotic distribution of scrambled net quadrature , 2003 .

[93]  Friedrich Pillichshammer,et al.  Bounds for the weighted Lp discrepancy and tractability of integration , 2003, J. Complex..

[94]  Emanouil I. Atanassov Efficient CPU-Specific Algorithm for Generating the Generalized Faure Sequences , 2003, LSSC.

[95]  Fred J. Hickernell,et al.  The existence of good extensible rank-1 lattices , 2003, J. Complex..

[96]  Stefan Heinrich Some open problems concerning the star-discrepancy , 2003, J. Complex..

[97]  Frances Y. Kuo,et al.  Component-by-component constructions achieve the optimal rate of convergence for multivariate integration in weighted Korobov and Sobolev spaces , 2003, J. Complex..

[98]  Xiaoqun Wang,et al.  Strong tractability of multivariate integration using quasi-Monte Carlo algorithms , 2003, Math. Comput..

[99]  G. Larcher,et al.  Weighted Discrepancy and High-Dimensional Numerical Integration , 2003 .

[100]  Harald Niederreiter,et al.  Error bounds for Quasi-Monte Carlo integration with uniform point sets , 2003 .

[101]  Pierre L'Ecuyer,et al.  Randomized Polynomial Lattice Rules for Multivariate Integration and Simulation , 2001, SIAM J. Sci. Comput..

[102]  Friedrich Pillichshammer,et al.  Sums of distances to the nearest integer and the discrepancy of digital nets , 2003 .

[103]  Friedrich Pillichshammer Improved upper bounds for the star discrepancy of digital nets in dimension 3 , 2003 .

[104]  Harald Niederreiter,et al.  ALGEBRAIC FUNCTION FIELDS OVER FINITE FIELDS , 2002 .

[105]  Frances Y. Kuo,et al.  On the step-by-step construction of quasi-Monte Carlo integration rules that achieve strong tractability error bounds in weighted Sobolev spaces , 2002, Math. Comput..

[106]  Xiaoqun Wang A Constructive Approach to Strong Tractability Using Quasi-Monte Carlo Algorithms , 2002, J. Complex..

[107]  G. Larcher,et al.  On the L2-Discrepancy of the Sobol-Hammersley Net in Dimension 3 , 2002, J. Complex..

[108]  Henryk Wozniakowski,et al.  Tractability of Integration in Non-periodic and Periodic Weighted Tensor Product Hilbert Spaces , 2002, J. Complex..

[109]  F. Pillichshammer On the -Discrepancy of the Hammersley Point Set , 2002 .

[110]  I. H. SLOAN,et al.  Constructing Randomly Shifted Lattice Rules in Weighted Sobolev Spaces , 2002, SIAM J. Numer. Anal..

[111]  M. Skriganov,et al.  Explicit constructions in the classical mean squares problem in irregularities of point distribution , 2002 .

[112]  Fred J. Hickernell,et al.  The Discrepancy and Gain Coefficients of Scrambled Digital Nets , 2002, J. Complex..

[113]  H. Niederreiter,et al.  Constructions of digital nets , 2002 .

[114]  Harald Niederreiter,et al.  Constructions of digital nets using global function fields , 2002 .

[115]  Pierre L'Ecuyer,et al.  Recent Advances in Randomized Quasi-Monte Carlo Methods , 2002 .

[116]  F. J. Hickernell Obtaining O( N - 2+∈ ) Convergence for Lattice Quadrature Rules , 2002 .

[117]  H. Niederreiter,et al.  A Kronecker Product Construction for Digital Nets , 2002 .

[118]  Peter Hellekalek,et al.  Digital $(t,m,s)$-nets and the spectral test , 2002 .

[119]  Ian H. Sloan,et al.  Component-by-component construction of good lattice rules , 2002, Math. Comput..

[120]  Gottlieb Pirsic,et al.  A Software Implementation of Niederreiter-Xing Sequences , 2002 .

[121]  Yves Edel Families of ternary ( t , m , s )-nets related to BCH-codes , 2002 .

[122]  Y. Edel,et al.  Coding‐theoretic constructions for (t,m,s)‐nets and ordered orthogonal arrays , 2002 .

[123]  Wolfgang Ch. Schmid,et al.  Calculation of the Quality Parameter of Digital Nets and Application to Their Construction , 2001, J. Complex..

[124]  Henryk Wozniakowski,et al.  Tractability of Multivariate Integration for Weighted Korobov Classes , 2001, J. Complex..

[125]  Graham H. Norton,et al.  Matrix-Product Codes over ?q , 2001, Applicable Algebra in Engineering, Communication and Computing.

[126]  Fred J. Hickernell,et al.  Integration and Approximation Based on Scramble Sampling in Arbitrary Dimensions , 2001, J. Complex..

[127]  H. Niederreiter,et al.  Rational Points on Curves Over Finite Fields: Theory and Applications , 2001 .

[128]  Families of Ternary -Nets Related to BCH-Codes , 2001 .

[129]  G. Larcher,et al.  Walsh Series Analysis of the L2-Discrepancyof Symmetrisized Point Sets , 2001 .

[130]  H. Niederreiter,et al.  Duality for digital nets and its applications , 2001 .

[131]  E. Novak,et al.  The inverse of the star-discrepancy depends linearly on the dimension , 2001 .

[132]  S. Stoilova,et al.  On the Theory of b-Adic Diaphony... , 2001 .

[133]  E. Novak,et al.  Foundations of Computational Mathematics: When are integration and discrepancy tractable? , 2001 .

[134]  Fred J. Hickernell,et al.  The Mean Square Discrepancy of Scrambled (t, s)-Sequences , 2000, SIAM J. Numer. Anal..

[135]  Harald Niederreiter Constructions of (t, m, s)-Nets , 2000 .

[136]  Art B. Owen,et al.  Monte Carlo, Quasi-Monte Carlo, and Randomized Quasi-Monte Carlo , 2000 .

[137]  Wolfgang Ch. Schmid,et al.  Improvements and Extensions of the “Salzburg Tables” by Using Irreducible Polynomials , 2000 .

[138]  H. Wozniakowski Efficiency of Quasi-Monte Carlo Algorithms for High Dimensional Integrals , 2000 .

[139]  M. M. Skriganov,et al.  Coding Theory and Uniform Distributions , 1999, ArXiv.

[140]  B. Fox Strategies for Quasi-Monte Carlo , 1999, International Series in Operations Research & Management Science.

[141]  Douglas R. Stinson,et al.  Association Schemes for Ordered Orthogonal Arrays and (T, M, S)-Nets , 1999, Canadian Journal of Mathematics.

[142]  G. Pirsic Base Changesfor (t,m,s)-Nets and Related Sequences , 1999 .

[143]  Jirí Matousek,et al.  On the L2-Discrepancy for Anchored Boxes , 1998, J. Complex..

[144]  Gary L. Mullen Orthogonal hypercubes and related designs , 1998 .

[145]  Steven G. Johnson,et al.  FFTW: an adaptive software architecture for the FFT , 1998, Proceedings of the 1998 IEEE International Conference on Acoustics, Speech and Signal Processing, ICASSP '98 (Cat. No.98CH36181).

[146]  Henryk Wozniakowski,et al.  When Are Quasi-Monte Carlo Algorithms Efficient for High Dimensional Integrals? , 1998, J. Complex..

[147]  J. M. Sek,et al.  On the L2-discrepancy for anchored boxes , 1998 .

[148]  H. Niederreiter,et al.  Nets, ( t, s )-Sequences, and Algebraic Geometry , 1998 .

[149]  G. Larcher Digital Point Sets: Analysis and Application , 1998 .

[150]  Peter Hellekalek,et al.  On the assessment of random and quasi-random point sets , 1998 .

[151]  Wolfgang Ch. Schmid,et al.  Shift—Nets: a New Class of Binary Digital (t, m, s)--Nets , 1998 .

[152]  Gerhard Larcher A bound for the discrepancy of digital nets and its application to the analysis of certain pseudo-random number generators , 1998 .

[153]  Gerhard Larcher On the Distribution of Digital Sequences , 1998 .

[154]  F. J. Hickernell Lattice rules: how well do they measure up? in random and quasi-random point sets , 1998 .

[155]  Jirí Matousek,et al.  Invitation to discrete mathematics , 1998 .

[156]  Fred J. Hickernell,et al.  A generalized discrepancy and quadrature error bound , 1998, Math. Comput..

[157]  Pierre L'Ecuyer,et al.  Random Number Generators: Selection Criteria and Testing , 1998 .

[158]  Yves Edel,et al.  Construction of digital nets from BCH -codes , 1998 .

[159]  A. Owen Monte Carlo Variance of Scrambled Net Quadrature , 1997 .

[160]  A. Owen Scrambled net variance for integrals of smooth functions , 1997 .

[161]  Michael J. Adams,et al.  A Construction for (t, m, s)-nets in Base q , 1997, SIAM J. Discret. Math..

[162]  Robert F. Tichy,et al.  Sequences, Discrepancies and Applications , 1997 .

[163]  F. J. Hickernell Quadrature Error Bounds with Applications to Lattice Rules , 1997 .

[164]  J HickernellF,et al.  Computing Multivariate Normal Probabilities Using Rank-1 Lattice Sequences , 1997 .

[165]  Wolfgang Ch. Schmid,et al.  Bounds for digital nets and sequences , 1997 .

[166]  Harald Niederreiter,et al.  Optimal Polynomials for ( t,m,s )-Nets and Numerical Integration of Multivariate Walsh Series , 1996 .

[167]  Karin Frank,et al.  Computing Discrepancies of Smolyak Quadrature Rules , 1996, J. Complex..

[168]  Gary L. Mullen,et al.  An Equivalence between (T, M, S)-Nets and Strongly Orthogonal Hypercubes , 1996, J. Comb. Theory, Ser. A.

[169]  Stefan Heinrich,et al.  Efficient algorithms for computing the L2-discrepancy , 1996, Math. Comput..

[170]  H. Niederreiter,et al.  Digital nets and sequences constructed over finite rings and their application to quasi-Monte Carlo integration , 1996 .

[171]  H. Niederreiter,et al.  Low-Discrepancy Sequences and Global Function Fields with Many Rational Places , 1996 .

[172]  William W. L. Chen On irregularities of distribution III , 1996, Journal of the Australian Mathematical Society. Series A. Pure Mathematics and Statistics.

[173]  Harald Niederreiter,et al.  Quasirandom points and global function fields , 1996 .

[174]  Gary L. Mullen,et al.  Construction of digital ( t,m,s )-nets from linear codes , 1996 .

[175]  K. Mark Lawrence,et al.  A combinatorial characterization of (t,m,s)-nets in baseb , 1996 .

[176]  Minoration de discrépance en dimension deux , 1996 .

[177]  Robert F. Tichy,et al.  Quasi-Monte Carlo Methods for Numerical Integration: Comparison of Different Low Discrepancy Sequences , 1996, Monte Carlo Methods Appl..

[178]  József Sándor,et al.  Handbook of Number Theory I , 1995 .

[179]  Gerhard Larcher On the Distribution of an Analog to Classical Kronecker-Sequences , 1995 .

[180]  Harald Niederreiter,et al.  Generalized $(t,s)$-sequences, Kronecker-type sequences, and Diophantine approximations of formal Laurent series , 1995 .

[181]  S. Tezuka Uniform Random Numbers: Theory and Practice , 1995 .

[182]  Gerhard Larcher,et al.  On the numerical integration of high-dimensional Walsh-series by quasi-Monte Carlo methods , 1995 .

[183]  A. Owen Randomly Permuted (t,m,s)-Nets and (t, s)-Sequences , 1995 .

[184]  H. Niederreiter,et al.  A construction of low-discrepancy sequences using global function fields , 1995 .

[185]  Harald Niederreiter,et al.  Low-discrepancy sequences obtained from algebraic function fields over finite fields , 1995 .

[186]  I. Sloan Lattice Methods for Multiple Integration , 1994 .

[187]  Gerhard Larcher,et al.  On the numerical integration of Walsh series by number-theoretic methods , 1994 .

[188]  Harald Niederreiter,et al.  Introduction to finite fields and their applications: Theoretical Applications of Finite Fields , 1994 .

[189]  Peter Hellekalek,et al.  General discrepancy estimates: the Walsh function system , 1994 .

[190]  Henning Stichtenoth,et al.  Algebraic function fields and codes , 1993, Universitext.

[191]  Shu Tezuka,et al.  Polynomial arithmetic analogue of Halton sequences , 1993, TOMC.

[192]  H. Faure,et al.  Discrépance et diaphonie en dimension un , 1993 .

[193]  Gerhard Larcher Nets obtained from rational functions over finite fields , 1993 .

[194]  Geoff Whittle,et al.  Point sets with uniformity properties and orthogonal hypercubes , 1992 .

[195]  Harald Niederreiter,et al.  Orthogonal arrays and other combinatorial aspects in the theory of uniform point distributions in unit cubes , 1992, Discret. Math..

[196]  On computing the lattice rule criterion R , 1992 .

[197]  H. Faure Good permutations for extreme discrepancy , 1992 .

[198]  Harald Niederreiter,et al.  Implementation and tests of low-discrepancy sequences , 1992, TOMC.

[199]  Harald Niederreiter,et al.  Random number generation and Quasi-Monte Carlo methods , 1992, CBMS-NSF regional conference series in applied mathematics.

[200]  Harald Niederreiter,et al.  Low-discrepancy point sets obtained by digital constructions over finite fields , 1992 .

[201]  Harald Neiderreiter A combinatorial problem for vector spaces over finite fields , 1991 .

[202]  Harald Niederreiter,et al.  A combinatorial problem for vector spaces over finite fields , 1991, Discret. Math..

[203]  W. R. Wade,et al.  Walsh Series, An Introduction to Dyadic Harmonic Analysis , 1990 .

[204]  P. Gruber,et al.  Funktionen von beschränkter Variation in der Theorie der Gleichverteilung , 1990 .

[205]  W. R. Wade,et al.  An introduction to dyadic harmonic analysis , 1990 .

[206]  J. Beck A two-dimensional van Aardenne-Ehrenfest theorem in irregularities of distribution , 1989 .

[207]  H. Niederreiter Low-discrepancy and low-dispersion sequences , 1988 .

[208]  Paul Bratley,et al.  Algorithm 659: Implementing Sobol's quasirandom sequence generator , 1988, TOMS.

[209]  Petko D. Proinov Symmetrization of the van der Corput generalized sequences , 1988 .

[210]  H. Niederreiter Point sets and sequences with small discrepancy , 1987 .

[211]  Gerhard Larcher A best lower bound for good lattice points , 1987 .

[212]  L. D. Clerck,et al.  A method for exact calculation of the stardiscrepancy of plane sets applied to the sequences of Hammersley , 1986 .

[213]  H. Faure,et al.  On the star-discrepancy of generalized Hammersley sequences in two dimensions , 1986 .

[214]  Bennett L. Fox,et al.  Algorithm 647: Implementation and Relative Efficiency of Quasirandom Sequence Generators , 1986, TOMS.

[215]  Harald Niederreiter,et al.  Low-discrepancy point sets , 1986 .

[216]  H. Faure Discrépance de suites associées à un système de numération (en dimension s) , 1982 .

[217]  Robert Béjian Minoration de la discrépance d'une suite quelconque sur T , 1982 .

[218]  H. Keng,et al.  Applications of number theory to numerical analysis , 1981 .

[219]  Henri Faure Discrépances de suites associées à un système de numération (en dimension un) , 1981 .

[220]  William W. L. Chen On irregularities of distribution. , 1980 .

[221]  K. F. Roth On irregularities of distribution IV , 1979 .

[222]  H. Niederreiter Quasi-Monte Carlo methods and pseudo-random numbers , 1978 .

[223]  H. Niederreiter Existence of good lattice points in the sense of Hlawka , 1978 .

[224]  Robert Béjian,et al.  Discrépance de la suite de van der Corput , 1978 .

[225]  Lauwerens Kuipers,et al.  Uniform distribution of sequences , 1974 .

[226]  Harald Niederreiter,et al.  On the distribution of pseudo-random numbers generated by the linear congruential method. II , 1972 .

[227]  Tony Warnock,et al.  Computational investigations of low-discrepancy point-sets. , 1972 .

[228]  W. Schmidt On irregularities of distribution vii , 1972 .

[229]  S. K. Zaremba,et al.  The extreme and L2 discrepancies of some plane sets , 1969 .

[230]  C. Rader Discrete Fourier transforms when the number of data samples is prime , 1968 .

[231]  H. G. Meijer,et al.  The Discrepancy of a G-Adic Sequence , 1968 .

[232]  A remark on uniformly distributed sequences and Riemann integrability , 1968 .

[233]  S. C. Zaremba Some applications of multidimensional integration by parts , 1968 .

[234]  I. Sobol On the distribution of points in a cube and the approximate evaluation of integrals , 1967 .

[235]  J. Tukey,et al.  An algorithm for the machine calculation of complex Fourier series , 1965 .

[236]  I. F. Sharygin,et al.  A lower estimate for the error of quadrature formulae for certain classes of functions , 1963 .

[237]  Edwin Weiss,et al.  Algebraic number theory , 1963 .

[238]  E. Hlawka Zur angenäherten Berechnung mehrfacher Integrale , 1962 .

[239]  Edmund Hlawka Über die Diskrepanz mehrdimensionaler Folgen mod. 1 , 1961 .

[240]  E. Hlawka Funktionen von beschränkter Variatiou in der Theorie der Gleichverteilung , 1961 .

[241]  J. Halton On the efficiency of certain quasi-random sequences of points in evaluating multi-dimensional integrals , 1960 .

[242]  H. Davenport Note on irregularities of distribution , 1956 .

[243]  N. Aronszajn Theory of Reproducing Kernels. , 1950 .

[244]  Some theorems on diophantine inequalities , 1950 .

[245]  N. Fine On the Walsh functions , 1949 .

[246]  J. Walsh A Closed Set of Normal Orthogonal Functions , 1923 .

[247]  H. Weyl Über die Gleichverteilung von Zahlen mod. Eins , 1916 .

[248]  On the mean square weighted L 2 discrepancy of randomized digital ( t , m , s )-nets over Z , 2022 .