Digital Nets and Sequences: Discrepancy Theory and Quasi-Monte Carlo Integration
暂无分享,去创建一个
[1] S. R. Simanca,et al. On Circulant Matrices , 2012 .
[2] Fred J. Hickernell,et al. Weighted compound integration rules with higher order convergence for all N , 2012, Numerical Algorithms.
[3] Magnus Wahlström,et al. Algorithmic construction of low-discrepancy point sets via dependent randomized rounding , 2010, J. Complex..
[4] E. Novak,et al. Tractability of Multivariate Problems Volume II: Standard Information for Functionals , 2010 .
[5] H. Triebel. Bases in Function Spaces, Sampling, Discrepancy, Numerical Integration , 2010 .
[6] Peter Kritzer,et al. Duality theory and propagation rules for generalized digital nets , 2010, Math. Comput..
[7] Friedrich Pillichshammer,et al. L_2 discrepancy of generalized two-dimensional Hammersley point sets scrambled with arbitrary permutations , 2010 .
[8] Harald Niederreiter,et al. Duality for digital sequences , 2009, J. Complex..
[9] Josef Dick,et al. QMC Rules of Arbitrary High Order: Reproducing Kernel Hilbert Space Approach , 2009 .
[10] Harald Niederreiter,et al. Algebraic Geometry in Coding Theory and Cryptography , 2009 .
[11] Friedrich Pillichshammer,et al. Lp discrepancy of generalized two-dimensional Hammersley point sets , 2009 .
[12] Harald Niederreiter,et al. Construction Algorithms for Good Extensible Lattice Rules , 2009 .
[13] J. Dick. THE DECAY OF THE WALSH COEFFICIENTS OF SMOOTH FUNCTIONS , 2009, Bulletin of the Australian Mathematical Society.
[14] Anand Srivastav,et al. Finding optimal volume subintervals with k points and calculating the star discrepancy are NP-hard problems , 2009, J. Complex..
[15] C. Lemieux. Monte Carlo and Quasi-Monte Carlo Sampling , 2009 .
[16] Pierre L'Ecuyer,et al. Quasi-Monte Carlo methods with applications in finance , 2008, Finance Stochastics.
[17] Wolfgang Ch. Schmid,et al. MINT – New Features and New Results , 2009 .
[18] THE QUALITY PARAMETER OF CYCLIC NETS AND HYPERPLANE NETS , 2009 .
[19] Friedrich Pillichshammer,et al. Discrepancy of Hyperplane Nets and Cyclic Nets , 2009 .
[20] Duality Theory and Propagation Rules for Generalized Nets , 2009 .
[21] F. Pillichshammer,et al. Construction Algorithms for Generalized Polynomial Lattice Rules , 2009 .
[22] Josef Dick,et al. Equidistribution Properties of Generalized Nets and Sequences , 2009 .
[23] Josef Dick,et al. On Quasi-Monte Carlo Rules Achieving Higher Order Convergence , 2009 .
[24] Magnus Wahlström,et al. Implementation of a Component-By-Component Algorithm to Generate Small Low-Discrepancy Samples , 2009 .
[25] Friedrich Pillichshammer,et al. L2 Discrepancy of Two-Dimensional Digitally Shifted Hammersley Point Sets in Base b , 2009 .
[26] E. Novak,et al. L 2 discrepancy and multivariate integration , 2009 .
[27] Harald Niederreiter,et al. On the exact t-value of Niederreiter and Sobol' sequences , 2008, J. Complex..
[28] Frances Y. Kuo,et al. Constructing Sobol Sequences with Better Two-Dimensional Projections , 2008, SIAM J. Sci. Comput..
[29] Josef Dick,et al. The construction of good extensible rank-1 lattices , 2008, Math. Comput..
[30] Michael Gnewuch. Bracketing numbers for axis-parallel boxes and applications to geometric discrepancy , 2008, J. Complex..
[31] Aicke Hinrichs,et al. Tractability properties of the weighted star discrepancy , 2008, J. Complex..
[32] Josef Dick,et al. Walsh Spaces Containing Smooth Functions and Quasi-Monte Carlo Rules of Arbitrary High Order , 2008, SIAM J. Numer. Anal..
[33] Harald Niederreiter,et al. Nets, (t, s)-Sequences, and Codes , 2008 .
[34] William W. L. Chen,et al. Orthogonality and Digit Shifts in the Classical Mean Squares Problem in Irregularities of Point Distribution , 2008 .
[35] Stephen Joe,et al. Good Lattice Rules with a Composite Number of Points Based on the Product Weighted Star Discrepancy , 2008 .
[36] Peter Kritzer,et al. Component-by-component construction of low-discrepancy point sets of small size , 2008, Monte Carlo Methods Appl..
[37] Benjamin Doerr,et al. Construction of Low-Discrepancy Point Sets of Small Size by Bracketing Covers and Dependent Randomized Rounding , 2008 .
[38] STAR EXTREME DISCREPANCY OF GENERALIZED TWO-DIMENSIONAL HAMMERSLEY POINT SETS , 2008 .
[39] Peter Kritzer,et al. Constructions of general polynomial lattice rules based on the weighted star discrepancy , 2007, Finite Fields Their Appl..
[40] Josef Dick,et al. The construction of extensible polynomial lattice rules with small weighted star discrepancy , 2007, Math. Comput..
[41] Peter Kritzer,et al. Constructions of general polynomial lattices for multivariate integration , 2007, Bulletin of the Australian Mathematical Society.
[42] Peter Kritzer,et al. On the existence of higher order polynomial lattices based on a generalized figure of merit , 2007, J. Complex..
[43] Josef Dick,et al. Strong tractability of multivariate integration of arbitrary high order using digitally shifted polynomial lattice rules , 2007, J. Complex..
[44] Josef Dick,et al. Explicit Constructions of Quasi-Monte Carlo Rules for the Numerical Integration of High-Dimensional Periodic Functions , 2007, SIAM J. Numer. Anal..
[45] M. Lacey,et al. On the Small Ball Inequality in All Dimensions , 2007, 0705.4619.
[46] Jürgen Hartinger,et al. On Corner Avoidance Properties of Random-Start Halton Sequences , 2007, SIAM J. Numer. Anal..
[47] Dirk Nuyens. Fast construction of good lattice rules , 2007 .
[48] Peter Kritzer,et al. A thorough analysis of the discrepancy of shifted Hammersley and van der Corput point sets , 2007 .
[49] Josef Dick,et al. The tent transformation can improve the convergence rate of quasi-Monte Carlo algorithms using digital nets , 2006, Numerische Mathematik.
[50] H. Faure,et al. Van der Corput sequences towards general (0,1)–sequences in base b , 2007 .
[51] Frances Y. Kuo,et al. Constructing Embedded Lattice Rules for Multivariate Integration , 2006, SIAM J. Sci. Comput..
[52] M. Skriganov. Harmonic analysis on totally disconnected groups and irregularities of point distributions , 2006 .
[53] Josef Dick,et al. On the mean square weighted L2 discrepancy of randomized digital nets in prime base , 2006, J. Complex..
[54] M. Lacey,et al. On the small ball inequality in three dimensions , 2006, math/0609815.
[55] Dirk Nuyens,et al. Fast Component-by-Component Construction, a Reprise for Different Kernels , 2006 .
[56] Peter Kritzer,et al. Improved upper bounds on the star discrepancy of (t, m, s)-nets and (t, s)-sequences , 2006, J. Complex..
[57] Peter Kritzer,et al. A best possible upper bound on the star discrepancy of (t, m, 2)-nets , 2006, Monte Carlo Methods Appl..
[58] Josef Dick,et al. Cyclic Digital Nets, Hyperplane Nets, and Multivariate Integration in Sobolev Spaces , 2006, SIAM J. Numer. Anal..
[59] Dirk Nuyens,et al. Fast algorithms for component-by-component construction of rank-1 lattice rules in shift-invariant reproducing kernel Hilbert spaces , 2006, Math. Comput..
[60] Peter Kritzer,et al. An exact formula for the L_2 discrepancy of the shifted Hammersley point set , 2006 .
[61] Peter Kritzer. On the Star Discrepancy of Digital Nets and Sequences in Three Dimensions , 2006 .
[62] Alexander Keller,et al. Myths of Computer Graphics , 2006 .
[63] Wolfgang Ch. Schmid,et al. MinT: A Database for Optimal Net Parameters , 2006 .
[64] Harald Niederreiter,et al. Weighted Star Discrepancy of Digital Nets in Prime Bases , 2006 .
[65] S. Joe. Construction of Good Rank-1 Lattice Rules Based on the Weighted Star Discrepancy , 2006 .
[66] P. Hellekalek,et al. Dyadic Diaphony , 2006 .
[67] A. Owen. Local antithetic sampling with scrambled nets , 2008, 0811.0528.
[68] Peter Kritzer,et al. Star discrepancy estimates for digital (t, m, 2)-nets and digital (t, 2) -sequences over Z2 , 2005 .
[69] Anand Srivastav,et al. Bounds and constructions for the star-discrepancy via ?-covers , 2005, J. Complex..
[70] Michael Drmota,et al. Precise distribution properties of the van der Corput sequence and related sequences , 2005 .
[71] Harald Niederreiter,et al. Constructions of (t, m, s)-nets and (t, s)-sequences , 2005, Finite Fields Their Appl..
[72] Frances Y. Kuo,et al. Construction algorithms for polynomial lattice rules for multivariate integration , 2005, Math. Comput..
[73] Josef Dick,et al. Multivariate integration in weighted Hilbert spaces based on Walsh functions and weighted Sobolev spaces , 2005, J. Complex..
[74] Fred J. Hickernell,et al. Strong tractability of integration using scrambled Niederreiter points , 2005, Math. Comput..
[75] Josef Dick,et al. On the mean square weighted ℒ₂ discrepancy of randomized digital (t,m,s)-nets over ℤ₂ , 2005 .
[76] G. Pirsic. A Small Taxonomy of Integration Node Sets , 2005 .
[77] Josef Dick,et al. Construction Algorithms for Digital Nets with Low Weighted Star Discrepancy , 2005, SIAM J. Numer. Anal..
[78] Henri Faure. IRREGULARITIES OF DISTRIBUTION OF DIGITAL (0,1)-SEQUENCES IN PRIME BASE , 2005 .
[79] Henri Faure. Discrepancy and diaphony of digital (0,1)-sequences in prime base , 2005 .
[80] Henryk Wozniakowski,et al. Liberating the weights , 2004, J. Complex..
[81] Aicke Hinrichs,et al. Covering numbers, Vapnik-ervonenkis classes and bounds for the star-discrepancy , 2004, J. Complex..
[82] Josef Dick. On the convergence rate of the component-by-component construction of good lattice rules , 2004, J. Complex..
[83] Harald Niederreiter,et al. Matrix-product constructions of digital nets , 2004, Finite Fields Their Appl..
[84] Harald Niederreiter,et al. Digital Nets and Coding Theory , 2004 .
[85] A. Owen. Quasi-Monte Carlo for integrands with point singularities at unknown locations , 2004 .
[86] H. Niederreiter,et al. Digital Nets, Duality, and Algebraic Curves , 2004 .
[87] S. Joe. Component by Component Construction of Rank-1 Lattice Rules HavingO(n-1(In(n))d) Star Discrepancy , 2004 .
[88] Walsh Series Analysis of the Star Discrepancy of Digital Nets and Sequences , 2004 .
[89] Fred J. Hickernell,et al. Optimal quadrature for Haar wavelet spaces , 2004, Math. Comput..
[90] Shu Tezuka,et al. I-binomial scrambling of digital nets and sequences , 2003, J. Complex..
[91] Harald Niederreiter,et al. The Existence of Good Extensible Polynomial Lattice Rules , 2003 .
[92] Wei-Liem Loh. On the asymptotic distribution of scrambled net quadrature , 2003 .
[93] Friedrich Pillichshammer,et al. Bounds for the weighted Lp discrepancy and tractability of integration , 2003, J. Complex..
[94] Emanouil I. Atanassov. Efficient CPU-Specific Algorithm for Generating the Generalized Faure Sequences , 2003, LSSC.
[95] Fred J. Hickernell,et al. The existence of good extensible rank-1 lattices , 2003, J. Complex..
[96] Stefan Heinrich. Some open problems concerning the star-discrepancy , 2003, J. Complex..
[97] Frances Y. Kuo,et al. Component-by-component constructions achieve the optimal rate of convergence for multivariate integration in weighted Korobov and Sobolev spaces , 2003, J. Complex..
[98] Xiaoqun Wang,et al. Strong tractability of multivariate integration using quasi-Monte Carlo algorithms , 2003, Math. Comput..
[99] G. Larcher,et al. Weighted Discrepancy and High-Dimensional Numerical Integration , 2003 .
[100] Harald Niederreiter,et al. Error bounds for Quasi-Monte Carlo integration with uniform point sets , 2003 .
[101] Pierre L'Ecuyer,et al. Randomized Polynomial Lattice Rules for Multivariate Integration and Simulation , 2001, SIAM J. Sci. Comput..
[102] Friedrich Pillichshammer,et al. Sums of distances to the nearest integer and the discrepancy of digital nets , 2003 .
[103] Friedrich Pillichshammer. Improved upper bounds for the star discrepancy of digital nets in dimension 3 , 2003 .
[104] Harald Niederreiter,et al. ALGEBRAIC FUNCTION FIELDS OVER FINITE FIELDS , 2002 .
[105] Frances Y. Kuo,et al. On the step-by-step construction of quasi-Monte Carlo integration rules that achieve strong tractability error bounds in weighted Sobolev spaces , 2002, Math. Comput..
[106] Xiaoqun Wang. A Constructive Approach to Strong Tractability Using Quasi-Monte Carlo Algorithms , 2002, J. Complex..
[107] G. Larcher,et al. On the L2-Discrepancy of the Sobol-Hammersley Net in Dimension 3 , 2002, J. Complex..
[108] Henryk Wozniakowski,et al. Tractability of Integration in Non-periodic and Periodic Weighted Tensor Product Hilbert Spaces , 2002, J. Complex..
[109] F. Pillichshammer. On the -Discrepancy of the Hammersley Point Set , 2002 .
[110] I. H. SLOAN,et al. Constructing Randomly Shifted Lattice Rules in Weighted Sobolev Spaces , 2002, SIAM J. Numer. Anal..
[111] M. Skriganov,et al. Explicit constructions in the classical mean squares problem in irregularities of point distribution , 2002 .
[112] Fred J. Hickernell,et al. The Discrepancy and Gain Coefficients of Scrambled Digital Nets , 2002, J. Complex..
[113] H. Niederreiter,et al. Constructions of digital nets , 2002 .
[114] Harald Niederreiter,et al. Constructions of digital nets using global function fields , 2002 .
[115] Pierre L'Ecuyer,et al. Recent Advances in Randomized Quasi-Monte Carlo Methods , 2002 .
[116] F. J. Hickernell. Obtaining O( N - 2+∈ ) Convergence for Lattice Quadrature Rules , 2002 .
[117] H. Niederreiter,et al. A Kronecker Product Construction for Digital Nets , 2002 .
[118] Peter Hellekalek,et al. Digital $(t,m,s)$-nets and the spectral test , 2002 .
[119] Ian H. Sloan,et al. Component-by-component construction of good lattice rules , 2002, Math. Comput..
[120] Gottlieb Pirsic,et al. A Software Implementation of Niederreiter-Xing Sequences , 2002 .
[121] Yves Edel. Families of ternary ( t , m , s )-nets related to BCH-codes , 2002 .
[122] Y. Edel,et al. Coding‐theoretic constructions for (t,m,s)‐nets and ordered orthogonal arrays , 2002 .
[123] Wolfgang Ch. Schmid,et al. Calculation of the Quality Parameter of Digital Nets and Application to Their Construction , 2001, J. Complex..
[124] Henryk Wozniakowski,et al. Tractability of Multivariate Integration for Weighted Korobov Classes , 2001, J. Complex..
[125] Graham H. Norton,et al. Matrix-Product Codes over ?q , 2001, Applicable Algebra in Engineering, Communication and Computing.
[126] Fred J. Hickernell,et al. Integration and Approximation Based on Scramble Sampling in Arbitrary Dimensions , 2001, J. Complex..
[127] H. Niederreiter,et al. Rational Points on Curves Over Finite Fields: Theory and Applications , 2001 .
[128] Families of Ternary -Nets Related to BCH-Codes , 2001 .
[129] G. Larcher,et al. Walsh Series Analysis of the L2-Discrepancyof Symmetrisized Point Sets , 2001 .
[130] H. Niederreiter,et al. Duality for digital nets and its applications , 2001 .
[131] E. Novak,et al. The inverse of the star-discrepancy depends linearly on the dimension , 2001 .
[132] S. Stoilova,et al. On the Theory of b-Adic Diaphony... , 2001 .
[133] E. Novak,et al. Foundations of Computational Mathematics: When are integration and discrepancy tractable? , 2001 .
[134] Fred J. Hickernell,et al. The Mean Square Discrepancy of Scrambled (t, s)-Sequences , 2000, SIAM J. Numer. Anal..
[135] Harald Niederreiter. Constructions of (t, m, s)-Nets , 2000 .
[136] Art B. Owen,et al. Monte Carlo, Quasi-Monte Carlo, and Randomized Quasi-Monte Carlo , 2000 .
[137] Wolfgang Ch. Schmid,et al. Improvements and Extensions of the “Salzburg Tables” by Using Irreducible Polynomials , 2000 .
[138] H. Wozniakowski. Efficiency of Quasi-Monte Carlo Algorithms for High Dimensional Integrals , 2000 .
[139] M. M. Skriganov,et al. Coding Theory and Uniform Distributions , 1999, ArXiv.
[140] B. Fox. Strategies for Quasi-Monte Carlo , 1999, International Series in Operations Research & Management Science.
[141] Douglas R. Stinson,et al. Association Schemes for Ordered Orthogonal Arrays and (T, M, S)-Nets , 1999, Canadian Journal of Mathematics.
[142] G. Pirsic. Base Changesfor (t,m,s)-Nets and Related Sequences , 1999 .
[143] Jirí Matousek,et al. On the L2-Discrepancy for Anchored Boxes , 1998, J. Complex..
[144] Gary L. Mullen. Orthogonal hypercubes and related designs , 1998 .
[145] Steven G. Johnson,et al. FFTW: an adaptive software architecture for the FFT , 1998, Proceedings of the 1998 IEEE International Conference on Acoustics, Speech and Signal Processing, ICASSP '98 (Cat. No.98CH36181).
[146] Henryk Wozniakowski,et al. When Are Quasi-Monte Carlo Algorithms Efficient for High Dimensional Integrals? , 1998, J. Complex..
[147] J. M. Sek,et al. On the L2-discrepancy for anchored boxes , 1998 .
[148] H. Niederreiter,et al. Nets, ( t, s )-Sequences, and Algebraic Geometry , 1998 .
[149] G. Larcher. Digital Point Sets: Analysis and Application , 1998 .
[150] Peter Hellekalek,et al. On the assessment of random and quasi-random point sets , 1998 .
[151] Wolfgang Ch. Schmid,et al. Shift—Nets: a New Class of Binary Digital (t, m, s)--Nets , 1998 .
[152] Gerhard Larcher. A bound for the discrepancy of digital nets and its application to the analysis of certain pseudo-random number generators , 1998 .
[153] Gerhard Larcher. On the Distribution of Digital Sequences , 1998 .
[154] F. J. Hickernell. Lattice rules: how well do they measure up? in random and quasi-random point sets , 1998 .
[155] Jirí Matousek,et al. Invitation to discrete mathematics , 1998 .
[156] Fred J. Hickernell,et al. A generalized discrepancy and quadrature error bound , 1998, Math. Comput..
[157] Pierre L'Ecuyer,et al. Random Number Generators: Selection Criteria and Testing , 1998 .
[158] Yves Edel,et al. Construction of digital nets from BCH -codes , 1998 .
[159] A. Owen. Monte Carlo Variance of Scrambled Net Quadrature , 1997 .
[160] A. Owen. Scrambled net variance for integrals of smooth functions , 1997 .
[161] Michael J. Adams,et al. A Construction for (t, m, s)-nets in Base q , 1997, SIAM J. Discret. Math..
[162] Robert F. Tichy,et al. Sequences, Discrepancies and Applications , 1997 .
[163] F. J. Hickernell. Quadrature Error Bounds with Applications to Lattice Rules , 1997 .
[164] J HickernellF,et al. Computing Multivariate Normal Probabilities Using Rank-1 Lattice Sequences , 1997 .
[165] Wolfgang Ch. Schmid,et al. Bounds for digital nets and sequences , 1997 .
[166] Harald Niederreiter,et al. Optimal Polynomials for ( t,m,s )-Nets and Numerical Integration of Multivariate Walsh Series , 1996 .
[167] Karin Frank,et al. Computing Discrepancies of Smolyak Quadrature Rules , 1996, J. Complex..
[168] Gary L. Mullen,et al. An Equivalence between (T, M, S)-Nets and Strongly Orthogonal Hypercubes , 1996, J. Comb. Theory, Ser. A.
[169] Stefan Heinrich,et al. Efficient algorithms for computing the L2-discrepancy , 1996, Math. Comput..
[170] H. Niederreiter,et al. Digital nets and sequences constructed over finite rings and their application to quasi-Monte Carlo integration , 1996 .
[171] H. Niederreiter,et al. Low-Discrepancy Sequences and Global Function Fields with Many Rational Places , 1996 .
[172] William W. L. Chen. On irregularities of distribution III , 1996, Journal of the Australian Mathematical Society. Series A. Pure Mathematics and Statistics.
[173] Harald Niederreiter,et al. Quasirandom points and global function fields , 1996 .
[174] Gary L. Mullen,et al. Construction of digital ( t,m,s )-nets from linear codes , 1996 .
[175] K. Mark Lawrence,et al. A combinatorial characterization of (t,m,s)-nets in baseb , 1996 .
[176] Minoration de discrépance en dimension deux , 1996 .
[177] Robert F. Tichy,et al. Quasi-Monte Carlo Methods for Numerical Integration: Comparison of Different Low Discrepancy Sequences , 1996, Monte Carlo Methods Appl..
[178] József Sándor,et al. Handbook of Number Theory I , 1995 .
[179] Gerhard Larcher. On the Distribution of an Analog to Classical Kronecker-Sequences , 1995 .
[180] Harald Niederreiter,et al. Generalized $(t,s)$-sequences, Kronecker-type sequences, and Diophantine approximations of formal Laurent series , 1995 .
[181] S. Tezuka. Uniform Random Numbers: Theory and Practice , 1995 .
[182] Gerhard Larcher,et al. On the numerical integration of high-dimensional Walsh-series by quasi-Monte Carlo methods , 1995 .
[183] A. Owen. Randomly Permuted (t,m,s)-Nets and (t, s)-Sequences , 1995 .
[184] H. Niederreiter,et al. A construction of low-discrepancy sequences using global function fields , 1995 .
[185] Harald Niederreiter,et al. Low-discrepancy sequences obtained from algebraic function fields over finite fields , 1995 .
[186] I. Sloan. Lattice Methods for Multiple Integration , 1994 .
[187] Gerhard Larcher,et al. On the numerical integration of Walsh series by number-theoretic methods , 1994 .
[188] Harald Niederreiter,et al. Introduction to finite fields and their applications: Theoretical Applications of Finite Fields , 1994 .
[189] Peter Hellekalek,et al. General discrepancy estimates: the Walsh function system , 1994 .
[190] Henning Stichtenoth,et al. Algebraic function fields and codes , 1993, Universitext.
[191] Shu Tezuka,et al. Polynomial arithmetic analogue of Halton sequences , 1993, TOMC.
[192] H. Faure,et al. Discrépance et diaphonie en dimension un , 1993 .
[193] Gerhard Larcher. Nets obtained from rational functions over finite fields , 1993 .
[194] Geoff Whittle,et al. Point sets with uniformity properties and orthogonal hypercubes , 1992 .
[195] Harald Niederreiter,et al. Orthogonal arrays and other combinatorial aspects in the theory of uniform point distributions in unit cubes , 1992, Discret. Math..
[196] On computing the lattice rule criterion R , 1992 .
[197] H. Faure. Good permutations for extreme discrepancy , 1992 .
[198] Harald Niederreiter,et al. Implementation and tests of low-discrepancy sequences , 1992, TOMC.
[199] Harald Niederreiter,et al. Random number generation and Quasi-Monte Carlo methods , 1992, CBMS-NSF regional conference series in applied mathematics.
[200] Harald Niederreiter,et al. Low-discrepancy point sets obtained by digital constructions over finite fields , 1992 .
[201] Harald Neiderreiter. A combinatorial problem for vector spaces over finite fields , 1991 .
[202] Harald Niederreiter,et al. A combinatorial problem for vector spaces over finite fields , 1991, Discret. Math..
[203] W. R. Wade,et al. Walsh Series, An Introduction to Dyadic Harmonic Analysis , 1990 .
[204] P. Gruber,et al. Funktionen von beschränkter Variation in der Theorie der Gleichverteilung , 1990 .
[205] W. R. Wade,et al. An introduction to dyadic harmonic analysis , 1990 .
[206] J. Beck. A two-dimensional van Aardenne-Ehrenfest theorem in irregularities of distribution , 1989 .
[207] H. Niederreiter. Low-discrepancy and low-dispersion sequences , 1988 .
[208] Paul Bratley,et al. Algorithm 659: Implementing Sobol's quasirandom sequence generator , 1988, TOMS.
[209] Petko D. Proinov. Symmetrization of the van der Corput generalized sequences , 1988 .
[210] H. Niederreiter. Point sets and sequences with small discrepancy , 1987 .
[211] Gerhard Larcher. A best lower bound for good lattice points , 1987 .
[212] L. D. Clerck,et al. A method for exact calculation of the stardiscrepancy of plane sets applied to the sequences of Hammersley , 1986 .
[213] H. Faure,et al. On the star-discrepancy of generalized Hammersley sequences in two dimensions , 1986 .
[214] Bennett L. Fox,et al. Algorithm 647: Implementation and Relative Efficiency of Quasirandom Sequence Generators , 1986, TOMS.
[215] Harald Niederreiter,et al. Low-discrepancy point sets , 1986 .
[216] H. Faure. Discrépance de suites associées à un système de numération (en dimension s) , 1982 .
[217] Robert Béjian. Minoration de la discrépance d'une suite quelconque sur T , 1982 .
[218] H. Keng,et al. Applications of number theory to numerical analysis , 1981 .
[219] Henri Faure. Discrépances de suites associées à un système de numération (en dimension un) , 1981 .
[220] William W. L. Chen. On irregularities of distribution. , 1980 .
[221] K. F. Roth. On irregularities of distribution IV , 1979 .
[222] H. Niederreiter. Quasi-Monte Carlo methods and pseudo-random numbers , 1978 .
[223] H. Niederreiter. Existence of good lattice points in the sense of Hlawka , 1978 .
[224] Robert Béjian,et al. Discrépance de la suite de van der Corput , 1978 .
[225] Lauwerens Kuipers,et al. Uniform distribution of sequences , 1974 .
[226] Harald Niederreiter,et al. On the distribution of pseudo-random numbers generated by the linear congruential method. II , 1972 .
[227] Tony Warnock,et al. Computational investigations of low-discrepancy point-sets. , 1972 .
[228] W. Schmidt. On irregularities of distribution vii , 1972 .
[229] S. K. Zaremba,et al. The extreme and L2 discrepancies of some plane sets , 1969 .
[230] C. Rader. Discrete Fourier transforms when the number of data samples is prime , 1968 .
[231] H. G. Meijer,et al. The Discrepancy of a G-Adic Sequence , 1968 .
[232] A remark on uniformly distributed sequences and Riemann integrability , 1968 .
[233] S. C. Zaremba. Some applications of multidimensional integration by parts , 1968 .
[234] I. Sobol. On the distribution of points in a cube and the approximate evaluation of integrals , 1967 .
[235] J. Tukey,et al. An algorithm for the machine calculation of complex Fourier series , 1965 .
[236] I. F. Sharygin,et al. A lower estimate for the error of quadrature formulae for certain classes of functions , 1963 .
[237] Edwin Weiss,et al. Algebraic number theory , 1963 .
[238] E. Hlawka. Zur angenäherten Berechnung mehrfacher Integrale , 1962 .
[239] Edmund Hlawka. Über die Diskrepanz mehrdimensionaler Folgen mod. 1 , 1961 .
[240] E. Hlawka. Funktionen von beschränkter Variatiou in der Theorie der Gleichverteilung , 1961 .
[241] J. Halton. On the efficiency of certain quasi-random sequences of points in evaluating multi-dimensional integrals , 1960 .
[242] H. Davenport. Note on irregularities of distribution , 1956 .
[243] N. Aronszajn. Theory of Reproducing Kernels. , 1950 .
[244] Some theorems on diophantine inequalities , 1950 .
[245] N. Fine. On the Walsh functions , 1949 .
[246] J. Walsh. A Closed Set of Normal Orthogonal Functions , 1923 .
[247] H. Weyl. Über die Gleichverteilung von Zahlen mod. Eins , 1916 .
[248] On the mean square weighted L 2 discrepancy of randomized digital ( t , m , s )-nets over Z , 2022 .