Evaluation of corroded chain link for continued use or life extension is a challenging task for the industry. ABS, together with fifteen (15) participating organizations, initiated the Fatigue of Corroded Chains (FoCCs) Joint Industry Project (JIP) in 2016. The objective of the FoCCs JIP is to investigate methodologies for assessing remaining fatigue life of the corroded mooring chain used for floating production systems. The JIP scope includes fatigue testing in labs and finite element analysis (FEA) of corroded chain samples retrieved from six floating production facilities in West Africa and the North Sea. The participating organizations include oil majors, chain manufactures, consulting firms, and classification societies, which represent a pool of broad range of mooring knowledge and experience. Knowledge gained from the JIP will be summarized and used toward the development of guidance notes for assessing fatigue life of corroded mooring chain for the industry.
Six sets of mooring chain samples with different corrosion conditions have been collected, cleaned and digitally scanned for fatigue testing and FEA. Procedures for testing and analysis have been developed with the objective of establishing commonly accepted methods. Different FEA procedures have been studied for making a better prediction of stress ranges of the corroded chain links. The findings from the fatigue testing and FEA will be utilized as basis for further development of the methods for fatigue assessment of corroded mooring chain. This paper summarizes the tests and FE analysis work for the selected chain samples. The JIP research work has found that corrosion, either general corrosion or local/pitting corrosion, can significantly reduce the chain fatigue capacity. The location and the geometry of corrosion pits have more impact on fatigue lives than the pit size. The JIP study has shown that FE analysis is an effective tool to capture the hot spot of corroded chain links and can provide insight in their fatigue performance. Different methods on the assessment of the stress range of a hot spot are compared and discussed.