Near-infrared InN quantum dots on high-In composition InGaN

We report the growth of InN quantum dots (QDs) on thick InGaN layers with high In composition (>50%) by molecular beam epitaxy. Optimized growth conditions are identified for the InGaN layers at reduced growth temperature and increased active N flux resulting in minimized phase separation and defect generation. The InN QDs grown on top of the optimized InGaN layer exhibit small size, high density, and photoluminescence up to room temperature. The InN/InGaN QDs reveal excellent potential for intermediate band solar cells with the InGaN and InN QD bandgap energies tuned to the best match of absorption to the solar spectrum.

[1]  T. Ikari,et al.  Nitrogen supply rate dependence of InGaN growth properties, by RF-MBE , 2007 .

[2]  Michael Heuken,et al.  Optical, structural investigations and band-gap bowing parameter of GaInN alloys , 2009 .

[3]  Junqiao Wu,et al.  When group-III nitrides go infrared: New properties and perspectives , 2009 .

[4]  A. Suzuki,et al.  MBE‐growth, characterization and properties of InN and InGaN , 2003 .

[5]  Photonic crystals: Lasing woodpiles , 2011 .

[6]  Detlef Hommel,et al.  Strong phase separation of strained InxGa1−xN layers due to spinodal and binodal decomposition: Formation of stable quantum dots , 2011 .

[7]  James S. Speck,et al.  Control of GaN surface morphologies using plasma-assisted molecular beam epitaxy , 2000 .

[8]  A. Luque,et al.  Increasing the Efficiency of Ideal Solar Cells by Photon Induced Transitions at Intermediate Levels , 1997 .

[9]  T. Seong,et al.  Enhancement of phase separation in the InGaN layer for self-assembled In-rich quantum dots , 2005 .

[10]  Theodore D. Moustakas,et al.  Phase separation in InGaN thick films and formation of InGaN/GaN double heterostructures in the entire alloy composition , 1997 .

[11]  Alexandros Georgakilas,et al.  InGaN(0001) alloys grown in the entire composition range by plasma assisted molecular beam epitaxy , 2006 .

[12]  C. Y. Chen,et al.  Photoluminescence properties of self-assembled InN dots embedded in GaN grown by metal organic vapor phase epitaxy , 2006 .

[13]  Fong Kwong Yam,et al.  InGaN: An overview of the growth kinetics, physical properties and emission mechanisms , 2008 .

[14]  W. Walukiewicz,et al.  Modeling of InGaN/Si tandem solar cells , 2008 .

[15]  James S. Speck,et al.  A growth diagram for plasma-assisted molecular beam epitaxy of In-face InN , 2007 .

[16]  Yang Cui-bai,et al.  Computational Investigation of InxGa1-xN/InN Quantum-Dot Intermediate-Band Solar Cell , 2011 .