Asymmetric Principal Component and Discriminant Analyses for Pattern Classification

This paper studies the roles of the principal component and discriminant analyses in the pattern classification and explores their problems with the asymmetric classes and/or the unbalanced training data. An asymmetric principal component analysis (APCA) is proposed to remove the unreliable dimensions more effectively than the conventional PCA. Targeted at the two-class problem, an asymmetric discriminant analysis in the APCA subspace is proposed to regularize the eigenvalue that is, in general, a biased estimate of the variance in the corresponding dimension. These efforts facilitate a reliable and discriminative feature extraction for the asymmetric classes and/or the unbalanced training data. The proposed approach is validated in the experiments by comparing it with the related methods. It consistently achieves the highest classification accuracy among all tested methods in the experiments.

[1]  David J. Kriegman,et al.  Eigenfaces vs. Fisherfaces: Recognition Using Class Specific Linear Projection , 1996, ECCV.

[2]  Kohji Fukunaga,et al.  Introduction to Statistical Pattern Recognition-Second Edition , 1990 .

[3]  Konstantinos N. Plataniotis,et al.  Ensemble-based discriminant learning with boosting for face recognition , 2006, IEEE Transactions on Neural Networks.

[4]  Lawrence Sirovich,et al.  Application of the Karhunen-Loeve Procedure for the Characterization of Human Faces , 1990, IEEE Trans. Pattern Anal. Mach. Intell..

[5]  Juyang Weng,et al.  Using Discriminant Eigenfeatures for Image Retrieval , 1996, IEEE Trans. Pattern Anal. Mach. Intell..

[6]  Tieniu Tan,et al.  Null Space Approach of Fisher Discriminant Analysis for Face Recognition , 2004, ECCV Workshop BioAW.

[7]  Xudong Jiang,et al.  Enhanced maximum likelihood face recognition , 2006 .

[8]  Stan Z. Li,et al.  FloatBoost learning and statistical face detection , 2004, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[9]  Xiaogang Wang,et al.  A unified framework for subspace face recognition , 2004, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[10]  Paul A. Viola,et al.  Robust Real-time Object Detection , 2001 .

[11]  Abdesselam Bouzerdoum,et al.  Skin segmentation using color pixel classification: analysis and comparison , 2005, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[12]  David A. Landgrebe,et al.  Linear feature extraction for multiclass problems , 1998, IGARSS '98. Sensing and Managing the Environment. 1998 IEEE International Geoscience and Remote Sensing. Symposium Proceedings. (Cat. No.98CH36174).

[13]  Alex Pentland,et al.  Bayesian face recognition , 2000, Pattern Recognit..

[14]  Chengjun Liu,et al.  A Bayesian Discriminating Features Method for Face Detection , 2003, IEEE Trans. Pattern Anal. Mach. Intell..

[15]  Tomaso A. Poggio,et al.  Example-Based Learning for View-Based Human Face Detection , 1998, IEEE Trans. Pattern Anal. Mach. Intell..

[16]  Pavel Pudil,et al.  Introduction to Statistical Pattern Recognition , 2006 .

[17]  Baback Moghaddam,et al.  Principal Manifolds and Probabilistic Subspaces for Visual Recognition , 2002, IEEE Trans. Pattern Anal. Mach. Intell..

[18]  Takeo Kanade,et al.  A statistical approach to 3d object detection applied to faces and cars , 2000 .

[19]  Alex Pentland,et al.  Probabilistic Visual Learning for Object Representation , 1997, IEEE Trans. Pattern Anal. Mach. Intell..

[20]  Chia-Wei Hsu,et al.  A Linear Feature Extraction for Multiclass Classification Problems Based on Class Mean and Covariance Discriminant Information , 2006, IEEE Trans. Pattern Anal. Mach. Intell..

[21]  Paul A. Viola,et al.  Robust Real-Time Face Detection , 2001, International Journal of Computer Vision.

[22]  Xudong Jiang,et al.  Eigenfeature Regularization and Extraction in Face Recognition , 2008, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[23]  J. Friedman Regularized Discriminant Analysis , 1989 .

[24]  Terence Sim,et al.  Discriminant Subspace Analysis: A Fukunaga-Koontz Approach , 2007, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[25]  Takeo Kanade,et al.  A statistical method for 3D object detection applied to faces and cars , 2000, Proceedings IEEE Conference on Computer Vision and Pattern Recognition. CVPR 2000 (Cat. No.PR00662).