Progress in rare-earth-doped mid-infrared fiber lasers.

The progress, and current challenges, in fabricating rare-earth-doped chalcogenide-glass fibers for developing mid-infrared (IR) fiber lasers are reviewed. For the first time a coherent explanation is forwarded for the failure to date to develop a gallium-lanthanum-sulfide glass mid-IR fiber laser. For the more covalent chalcogenide glasses, the importance of optimizing the glass host and glass processing routes in order to minimize non-radiative decay and to avoid rare earth ion clustering and glass devitrification is discussed. For the first time a new idea is explored to explain an additional method of non-radiative depopulation of the excited state in the mid-IR that has not been properly recognized before: that of impurity multiphonon relaxation. Practical characterization of candidate selenide glasses is presented. Potential applications of mid-infrared fiber lasers are suggested.

[1]  Carl W. Ponader,et al.  Physical properties and Raman spectroscopy of GeAs sulphide glasses , 1999 .

[2]  David N. Payne,et al.  Infrared emission from holmium doped gallium lanthanum sulphide glass , 1999 .

[3]  A. Seddon,et al.  Temperature dependence of viscosity of Er3+-doped oxyfluoride glasses and nano-glass-ceramics , 2007 .

[5]  Jasbinder S. Sanghera,et al.  Active and passive chalcogenide glass optical fibers for IR applications: a review , 1999 .

[6]  R. S. Quimby,et al.  Modeling of Cascade Lasing in Dy : Chalcogenide Glass Fiber Laser With Efficient Output at 4.5 $\mu$m , 2008, IEEE Photonics Technology Letters.

[7]  D N Payne,et al.  Spectroscopic data of the 1.8-, 2.9-, and 4.3-microm transitions in dysprosium-doped gallium lanthanum sulfide glass. , 1996, Optics letters.

[8]  Jong Heo,et al.  Absorption and mid-infrared emission spectroscopy of Dy3+ in Ge-As(or Ga)-S glasses , 1996 .

[9]  Leslie Brandon Shaw,et al.  Development and Infrared Applications of Chalcogenide Glass Optical Fibers , 2000 .

[10]  David N. Payne,et al.  Rare-earth doped chalcogenide glass laser , 1996 .

[11]  Richard S. Quimby,et al.  Multiphonon energy gap law in rare-earth doped chalcogenide glass , 2003 .

[12]  J. Heo Emission and local structure of rare-earth ions in chalcogenide glasses , 2007 .

[13]  T. Lee,et al.  Evidence of formation of tightly bound rare-earth clusters in chalcogenide glasses and their evolution with glass composition , 2009 .

[14]  J. Freitas,et al.  Structural investigation of chalcogenide and chalcohalide glasses using Raman spectroscopy , 1999 .

[15]  Angela B. Seddon,et al.  Thermal Analysis of Inorganic Compound Glasses and Glass‐Ceramics , 2008 .

[16]  Trevor M. Benson,et al.  Crystallization behavior of Dy 3+-doped selenide glasses , 2011 .

[17]  Bujin Guo,et al.  Laser-based mid-infrared reflectance imaging of biological tissues. , 2004, Optics express.

[18]  Virginie Nazabal,et al.  Design of Er3+-doped chalcogenide glass laser for MID-IR application , 2009 .

[19]  Paul F. Kerr,et al.  Variations in infrared spectra, molecular symmetry and site symmetry of sulfate minerals , 1965 .

[20]  C. T. Moynihan,et al.  Bulk and impurity infrared absorption in 0.5 As2Se30.5 GeSe2 glass , 1977 .

[21]  Leslie Brandon Shaw,et al.  Mid-wave IR and long-wave IR laser potential of rare-earth doped chalcogenide glass fiber , 2001 .

[22]  Richard I. Kangley,et al.  Analysis of oxide content in gallium lanthanum sulphide (GLS) glasses by infrared absorption spectroscopy , 2003 .

[23]  Maurizio Ferrari,et al.  Fabrication and characterization of nanoscale, Er3+-doped, ultratransparent oxy-fluoride glass ceramics , 2002 .

[24]  Angela B. Seddon,et al.  Glass formation in the Te-enriched part of the quaternary Ge–As–Se–Te system and its implication for mid-infrared optical fibres , 2004 .

[25]  B. Judd,et al.  OPTICAL ABSORPTION INTENSITIES OF RARE-EARTH IONS , 1962 .

[26]  D. Hewak,et al.  Fabrication and spectroscopy of erbium doped gallium lanthanum sulphide glass fibres for mid-infrared laser applications. , 1997, Optics express.

[27]  G. S. Ofelt Intensities of Crystal Spectra of Rare‐Earth Ions , 1962 .

[28]  Richard J. Curry,et al.  Chalcogenide glass thin films and planar waveguides , 2005 .

[29]  A. Hrubý Evaluation of glass-forming tendency by means of DTA , 1972 .

[30]  David N. Payne,et al.  Infrared emission and ion–ion interactions in thulium- and terbium-doped gallium lanthanum sulfide glass , 1999 .

[31]  Ishwar D. Aggarwal,et al.  Fabrication of long lengths of low-loss IR transmitting As/sub 40/S/sub (60-x)/Se/sub x/ glass fibers , 1996 .

[32]  Carl W. Ponader,et al.  Clustering of rare earths in GeAs sulfide glass , 2002 .

[33]  Virginie Nazabal,et al.  Er3+-doped GeGaSbS glasses for mid-IR fibre laser application: Synthesis and rare earth spectroscopy , 2008 .

[34]  J. Sanghera,et al.  Waveguide amplifiers in sputtered films of Er3+-doped gallium lanthanum sulfide glass. , 2006, Optics express.

[35]  S. G. Bishop,et al.  Excitation of rare earth emission in chalcogenide glasses by broadband Urbach edge absorption , 2000 .

[36]  R. Wyatt,et al.  Optical and structural analysis of neodymium-doped silica-based optical fibre , 1989 .

[37]  Alexis G. Clare,et al.  Laboratory preparation of highly pure As2Se3 glass , 1995 .

[38]  Daniel W. Hewak,et al.  Minimum loss predictions and measurements in gallium lanthanum sulphide based glasses and fibre , 1998 .

[39]  A. Seddon,et al.  The decisive role of oxide content in the formation and crystallization of gallium-lanthanum-sulfide glasses , 1999 .

[40]  Keiji Tanaka,et al.  Photoluminescence from Pr3+-doped chalcogenide glasses excited by bandgap light , 1999 .

[41]  G. G. Devyatykh,et al.  Single-Mode As–S Glass Fibers , 2003 .

[42]  Sabyasachi Sen,et al.  Structural role of Nd3+ and Al3+ cations in SiO2 glass : a 29Si MAS-NMR spin-lattice relaxation, 27Al NMR and EPR study , 1995 .

[43]  W. H. Lowdermilk,et al.  Multiphonon relaxation of rare-earth ions in oxide glasses , 1977 .