Shared and distinct transcriptomic cell types across neocortical areas

The neocortex contains a multitude of cell types that are segregated into layers and functionally distinct areas. To investigate the diversity of cell types across the mouse neocortex, here we analysed 23,822 cells from two areas at distant poles of the mouse neocortex: the primary visual cortex and the anterior lateral motor cortex. We define 133 transcriptomic cell types by deep, single-cell RNA sequencing. Nearly all types of GABA (γ-aminobutyric acid)-containing neurons are shared across both areas, whereas most types of glutamatergic neurons were found in one of the two areas. By combining single-cell RNA sequencing and retrograde labelling, we match transcriptomic types of glutamatergic neurons to their long-range projection specificity. Our study establishes a combined transcriptomic and projectional taxonomy of cortical cell types from functionally distinct areas of the adult mouse cortex.Single-cell transcriptomics of more than 20,000 cells from two functionally distinct areas of the mouse neocortex identifies 133 transcriptomic types, and provides a foundation for understanding the diversity of cortical cell types.

[1]  J. Fuster Prefrontal Cortex , 2018 .

[2]  P. Rakic Specification of cerebral cortical areas. , 1988, Science.

[3]  B. Kolb,et al.  The Cerebral cortex of the rat , 1990 .

[4]  George Paxinos,et al.  The Mouse Brain in Stereotaxic Coordinates , 2001 .

[5]  V. Mountcastle Perceptual Neuroscience: The Cerebral Cortex , 1998 .

[6]  C. Englund,et al.  Cajal-Retzius cells in the mouse: transcription factors, neurotransmitters, and birthdays suggest a pallial origin. , 2003, Brain research. Developmental brain research.

[7]  E. Grove,et al.  Massive loss of Cajal-Retzius cells does not disrupt neocortical layer order , 2006, Development.

[8]  Minoru Takemoto,et al.  Microarray analysis of blood microvessels from PDGF‐B and PDGF‐Rβ mutant mice identifies novel markers for brain pericytes , 2006, FASEB journal : official publication of the Federation of American Societies for Experimental Biology.

[9]  Samuel D. Gale,et al.  Cre recombinase-mediated restoration of nigrostriatal dopamine in dopamine-deficient mice reverses hypophagia and bradykinesia. , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[10]  S. Nelson,et al.  Molecular taxonomy of major neuronal classes in the adult mouse forebrain , 2006, Nature Neuroscience.

[11]  P. Arlotta,et al.  Neuronal subtype specification in the cerebral cortex , 2007, Nature Reviews Neuroscience.

[12]  S. Fortunato,et al.  Resolution limit in community detection , 2006, Proceedings of the National Academy of Sciences.

[13]  Allan R. Jones,et al.  Genome-wide atlas of gene expression in the adult mouse brain , 2007, Nature.

[14]  Andy Liaw,et al.  Classification and Regression by randomForest , 2007 .

[15]  Marina Gertsenstein,et al.  Developmental and adult phenotyping directly from mutant embryonic stem cells , 2007, Proceedings of the National Academy of Sciences.

[16]  C. S. Raymond,et al.  High-Efficiency FLP and ΦC31 Site-Specific Recombination in Mammalian Cells , 2007, PloS one.

[17]  S. Nelson,et al.  A manual method for the purification of fluorescently labeled neurons from the mammalian brain , 2007, Nature Protocols.

[18]  Shen-Ju Chou,et al.  Area Patterning of the Mammalian Cortex , 2007, Neuron.

[19]  Anne E Carpenter,et al.  CellProfiler: free, versatile software for automated biological image analysis. , 2007, BioTechniques.

[20]  Steve Horvath,et al.  WGCNA: an R package for weighted correlation network analysis , 2008, BMC Bioinformatics.

[21]  Y. Xing,et al.  A Transcriptome Database for Astrocytes, Neurons, and Oligodendrocytes: A New Resource for Understanding Brain Development and Function , 2008, The Journal of Neuroscience.

[22]  G. Kreiman,et al.  Timing, Timing, Timing: Fast Decoding of Object Information from Intracranial Field Potentials in Human Visual Cortex , 2009, Neuron.

[23]  Hadley Wickham,et al.  ggplot2 - Elegant Graphics for Data Analysis (2nd Edition) , 2017 .

[24]  I. Kostović,et al.  New horizons for the subplate zone and its pioneering neurons. , 2009, Cerebral cortex.

[25]  Allan R. Jones,et al.  An anatomic gene expression atlas of the adult mouse brain , 2009, Nature Neuroscience.

[26]  S. Rétaux,et al.  Differential expression of LIM-homeodomain factors in Cajal-Retzius cells of primates, rodents, and birds. , 2010, Cerebral cortex.

[27]  Hanno S Meyer,et al.  Cell-type specific properties of pyramidal neurons in neocortex underlying a layout that is modifiable depending on the cortical area. , 2010, Cerebral cortex.

[28]  Jessica A. Cardin,et al.  Cellular Mechanisms of Temporal Sensitivity in Visual Cortex Neurons , 2010, The Journal of Neuroscience.

[29]  Javier DeFelipe,et al.  The Evolution of the Brain, the Human Nature of Cortical Circuits, and Intellectual Creativity , 2011, Front. Neuroanat..

[30]  C. Betsholtz,et al.  Pericytes: developmental, physiological, and pathological perspectives, problems, and promises. , 2011, Developmental cell.

[31]  G. Fishell,et al.  Three groups of interneurons account for nearly 100% of neocortical GABAergic neurons , 2011, Developmental neurobiology.

[32]  Allan R. Jones,et al.  Large-Scale Cellular-Resolution Gene Profiling in Human Neocortex Reveals Species-Specific Molecular Signatures , 2012, Cell.

[33]  R. Sandberg,et al.  Full-Length mRNA-Seq from single cell levels of RNA and individual circulating tumor cells , 2012, Nature Biotechnology.

[34]  L. Bodea,et al.  Siglec‐h on activated microglia for recognition and engulfment of glioma cells , 2013, Glia.

[35]  H. Taniguchi,et al.  The Spatial and Temporal Origin of Chandelier Cells in Mouse Neocortex , 2013, Science.

[36]  Åsa K. Björklund,et al.  Smart-seq2 for sensitive full-length transcriptome profiling in single cells , 2013, Nature Methods.

[37]  Le Cong,et al.  Multiplex Genome Engineering Using CRISPR/Cas Systems , 2013, Science.

[38]  Y. Nakagawa,et al.  Thalamic Control of Neocortical Area Formation in Mice , 2013, The Journal of Neuroscience.

[39]  D. O'Leary,et al.  Geniculocortical Input Drives Genetic Distinctions Between Primary and Higher-Order Visual Areas , 2013, Science.

[40]  Thomas R. Gingeras,et al.  STAR: ultrafast universal RNA-seq aligner , 2013, Bioinform..

[41]  Robert Gentleman,et al.  Software for Computing and Annotating Genomic Ranges , 2013, PLoS Comput. Biol..

[42]  H. Luhmann,et al.  Cajal–Retzius cells: Update on structural and functional properties of these mystic neurons that bridged the 20th century , 2014, Neuroscience.

[43]  G. Feng,et al.  Acute brain slice methods for adult and aging animals: application of targeted patch clamp analysis and optogenetics. , 2014, Methods in molecular biology.

[44]  Staci A. Sorensen,et al.  Anatomical characterization of Cre driver mice for neural circuit mapping and manipulation , 2014, Front. Neural Circuits.

[45]  Allan R. Jones,et al.  A mesoscale connectome of the mouse brain , 2014, Nature.

[46]  L. Luo,et al.  Deterministic Progenitor Behavior and Unitary Production of Neurons in the Neocortex , 2014, Cell.

[47]  Z. Molnár,et al.  Extracortical origin of some murine subplate cell populations , 2014, Proceedings of the National Academy of Sciences.

[48]  T. Maniatis,et al.  An RNA-Sequencing Transcriptome and Splicing Database of Glia, Neurons, and Vascular Cells of the Cerebral Cortex , 2014, The Journal of Neuroscience.

[49]  Zengcai V. Guo,et al.  Flow of Cortical Activity Underlying a Tactile Decision in Mice , 2014, Neuron.

[50]  S. Linnarsson,et al.  Cell types in the mouse cortex and hippocampus revealed by single-cell RNA-seq , 2015, Science.

[51]  Hongkui Zeng,et al.  Correlated gene expression and target specificity demonstrate excitatory projection neuron diversity. , 2015, Cerebral cortex.

[52]  Matthew E. Ritchie,et al.  limma powers differential expression analyses for RNA-sequencing and microarray studies , 2015, Nucleic acids research.

[53]  E. Callaway,et al.  Three Types of Cortical Layer 5 Neurons That Differ in Brain-wide Connectivity and Function , 2015, Neuron.

[54]  Alexander S. Ecker,et al.  Principles of connectivity among morphologically defined cell types in adult neocortex , 2015, Science.

[55]  James G. King,et al.  Reconstruction and Simulation of Neocortical Microcircuitry , 2015, Cell.

[56]  Evan Z. Macosko,et al.  Highly Parallel Genome-wide Expression Profiling of Individual Cells Using Nanoliter Droplets , 2015, Cell.

[57]  Zengcai V. Guo,et al.  A motor cortex circuit for motor planning and movement , 2015, Nature.

[58]  Tal Galili,et al.  dendextend: an R package for visualizing, adjusting and comparing trees of hierarchical clustering , 2015, Bioinform..

[59]  G. Shepherd,et al.  The neocortical circuit: themes and variations , 2015, Nature Neuroscience.

[60]  Monther Alhamdoosh,et al.  RNA-seq analysis is easy as 1-2-3 with limma, Glimma and edgeR , 2016, F1000Research.

[61]  Monther Alhamdoosh,et al.  RNA-seq analysis is easy as 1-2-3 with limma, Glimma and edgeR , 2016, F1000Research.

[62]  Jesper Andersson,et al.  A multi-modal parcellation of human cerebral cortex , 2016, Nature.

[63]  Athanasia G. Palasantza,et al.  Electrophysiological, transcriptomic and morphologic profiling of single neurons using Patch-seq , 2015, Nature Biotechnology.

[64]  Stefan Mihalas,et al.  A Comparison of Visual Response Properties in the Lateral Geniculate Nucleus and Primary Visual Cortex of Awake and Anesthetized Mice , 2016, The Journal of Neuroscience.

[65]  Jason Tucciarone,et al.  Strategies and Tools for Combinatorial Targeting of GABAergic Neurons in Mouse Cerebral Cortex , 2016, Neuron.

[66]  F. C. Bennett,et al.  New tools for studying microglia in the mouse and human CNS , 2016, Proceedings of the National Academy of Sciences.

[67]  Sean M. Kelly,et al.  Erratum: Strategies and Tools for Combinatorial Targeting of GABAergic Neurons in Mouse Cerebral Cortex (Neuron (2016) 19(6) (1228–1243)(S089662731630513X)(10.1016/j.neuron.2016.08.021)) , 2016 .

[68]  Christof Koch,et al.  Adult Mouse Cortical Cell Taxonomy by Single Cell Transcriptomics , 2016, Nature Neuroscience.

[69]  Evan Z. Macosko,et al.  Comprehensive Classification of Retinal Bipolar Neurons by Single-Cell Transcriptomics , 2016, Cell.

[70]  L. Looger,et al.  A Designer AAV Variant Permits Efficient Retrograde Access to Projection Neurons , 2016, Neuron.

[71]  Jens Hjerling-Leffler,et al.  Oligodendrocyte heterogeneity in the mouse juvenile and adult central nervous system , 2016, Science.

[72]  Z. J. Huang,et al.  Transcriptional Architecture of Synaptic Communication Delineates GABAergic Neuron Identity , 2017, Cell.

[73]  Lars E. Borm,et al.  The promise of spatial transcriptomics for neuroscience in the era of molecular cell typing , 2017, Science.

[74]  Allon M. Klein,et al.  Single-Cell Analysis of Experience-Dependent Transcriptomic States in Mouse Visual Cortex , 2017, Nature Neuroscience.

[75]  Evan Z. Macosko,et al.  A Molecular Census of Arcuate Hypothalamus and Median Eminence Cell Types , 2017, Nature Neuroscience.

[76]  Hongkui Zeng,et al.  Neuronal cell-type classification: challenges, opportunities and the path forward , 2017, Nature Reviews Neuroscience.

[77]  Markus M. Hilscher,et al.  Chrna2-Martinotti Cells Synchronize Layer 5 Type A Pyramidal Cells via Rebound Excitation , 2017, PLoS biology.

[78]  Zengcai V. Guo,et al.  Maintenance of persistent activity in a frontal thalamocortical loop , 2017, Nature.

[79]  Rebecca D Hodge,et al.  A Single-Cell Roadmap of Lineage Bifurcation in Human ESC Models of Embryonic Brain Development. , 2017, Cell stem cell.

[80]  Julien Prados,et al.  Transcriptomic and anatomic parcellation of 5-HT3AR expressing cortical interneuron subtypes revealed by single-cell RNA sequencing , 2017, Nature Communications.

[81]  Julie A. Harris,et al.  Organization of the connections between claustrum and cortex in the mouse , 2016, The Journal of comparative neurology.

[82]  Tsai-Wen Chen,et al.  A Map of Anticipatory Activity in Mouse Motor Cortex , 2017, Neuron.

[83]  Zachary T. Nolan,et al.  Subset of Cortical Layer 6b Neurons Selectively Innervates Higher Order Thalamic Nuclei in Mice , 2018, Cerebral cortex.

[84]  Charles R. Gerfen,et al.  Distinct descending motor cortex pathways and their roles in movement , 2017, Nature.

[85]  K. Svoboda,et al.  Neural mechanisms of movement planning: motor cortex and beyond , 2018, Current Opinion in Neurobiology.

[86]  Ian R. Wickersham,et al.  Nontoxic, double-deletion-mutant rabies viral vectors for retrograde targeting of projection neurons , 2018, Nature Neuroscience.