Sparse-wavelength angle-multiplexed volume holographic memory system: analysis and advances.

We present and analyze our hybrid wavelength-and-angle-multiplexed volume holographic memory system. The hybridization of wavelength and angle multiplexing relaxes demands on spectral-tuning sources, angle-tuning devices, and optical system numerical apertures while maintaining a large K-space addressability. We consider realistic properties of our volume holographic memory system, addressing practical issues such as storage density and material-dependent photon-limited information throughput. Finally, we present experimental results of the storage of 2000 sparse-wavelength angle-multiplexed volume holograms in a 1.86-cm3 volume of lithium niobate.

[2]  Pochi Yeh,et al.  Diffraction properties of fixed gratings in photorefractive media , 1990, Optical Society of America Annual Meeting.

[3]  M A Neifeld Improvements in the capacity of computer-generated holographic storage using the Lee method with sparse multivalued reconstructions. , 1995, Applied optics.

[4]  L Hesselink,et al.  Volume Holographic Storage and Retrieval of Digital Data , 1994, Science.

[5]  M A Neifeld Multiple-error-correcting codes for improving the performance of optical matrix-vector processors. , 1995, Optics letters.

[6]  G Pauliat,et al.  Dynamic phase-encoding storage of 64 images in a BaTiO3 photorefractive crystal. , 1994, Optics letters.

[7]  F. Mok,et al.  Storage of 500 high-resolution holograms in a LiNbO(3) crystal. , 1991, Optics letters.

[8]  Glenn T. Sincerbox,et al.  Holographic storage — the quest for the ideal material continues , 1995 .

[9]  D Psaltis,et al.  Cross talk in wavelength-multiplexed holographic memories. , 1993, Optics letters.

[10]  F. Mok,et al.  Angle-multiplexed storage of 5000 holograms in lithium niobate. , 1993, Optics letters.

[11]  S Zhou,et al.  Optical implementation of a multiwavelength half-adder. , 1993, Optics letters.

[12]  Holographic memory using long photorefractive fiber array , 1995 .

[13]  J. J. Amodei,et al.  HOLOGRAPHIC PATTERN FIXING IN ELECTRO‐OPTIC CRYSTALS , 1971 .

[14]  Feng Zhao,et al.  Effects of recording-erasure dynamics of storage capacity of a wavelength-multiplexed reflection-type photorefractive hologram. , 1994, Applied optics.

[15]  Pochi Yeh,et al.  Photorefractive volume holographic memory systems: approaches, limitations, and requirements , 1995, Optics & Photonics.

[16]  D Psaltis,et al.  Sampled dynamic holographic memory. , 1992, Optics letters.

[17]  Richard C. Barker,et al.  Theory of complementary holograms arising from electron–hole transport in photorefractive media , 1990 .

[18]  D A Gregory,et al.  Reconfigurable interconnections using photorefractive holograms. , 1990, Applied optics.

[19]  M A Neifeld,et al.  Error correction for increasing the usable capacity of photorefractive memories. , 1994, Optics letters.

[20]  Statistical analysis of cross-talk noise and storage capacity in volume holographic memory: image plane holograms. , 1995, Optics letters.

[21]  Feng Zhao,et al.  Cross-talk noise in a wavelength-multiplexed reflection-type photorefractive fiber hologram. , 1993, Optics letters.

[22]  Pochi Yeh,et al.  Absorption effects in photorefractive volume-holographic memory systems. II. Material heating , 1996 .

[23]  Mercedes Carrascosa,et al.  Theoretical modeling of the fixing and developing of holographic gratings in LiNbO 3 , 1990 .

[24]  S Campbell,et al.  Hybrid sparse-wavelength angle-multiplexed optical data storage system. , 1994, Optics letters.

[25]  M. Khoshnevisan,et al.  Compact volume holographic memory system with rapid acoustooptic addressing , 1994, Proceedings of 1994 Nonlinear Optics: Materials, Fundamentals and Applications.

[26]  C Gu,et al.  Statistical analysis of cross-talk noise and storage capacity in volume holographic memory. , 1994, Optics letters.

[27]  Lambertus Hesselink,et al.  Recall of linear combinations of stored data pages using phase code multiplexing in volume holography , 1994, Proceedings of 1994 Nonlinear Optics: Materials, Fundamentals and Applications.

[28]  Pochi Yeh,et al.  Absorption effects in photorefractive volume-holographic memory systems. I. Beam depletion , 1996 .

[29]  Demetri Psaltis,et al.  Cross talk in phase-coded holographic memories , 1993 .

[30]  Theo T. Tschudi,et al.  Volume hologram multiplexing using a deterministic phase encoding method , 1991 .

[31]  Kristina M. Johnson,et al.  Maximized photorefractive holographic storage , 1991 .

[32]  H Sasaki,et al.  Fast update of dynamic photorefractive optical memory. , 1992, Optics letters.

[33]  A Yariv,et al.  Optical data storage using orthogonal wavelength multiplexed volume holograms. , 1992, Optics letters.

[34]  Theo T. Tschudi,et al.  General formalism for angular and phase-encoding multiplexing in holographic image storage , 1995 .

[35]  P Yeh Fundamental limit of the speed of photorefractive effect and its impact on device applications and material research. , 1987, Applied optics.

[36]  Claire Gu,et al.  Crosstalk limited storage capacity of volume holographic memory , 1992, Optical Society of America Annual Meeting.

[37]  Lambertus Hesselink,et al.  Optical memories implemented with photorefractive media , 1993 .

[38]  C Gu,et al.  Optical restoration of photorefractive holograms through self-enhanced diffraction. , 1995, Optics letters.

[39]  Francis T. S. Yu,et al.  Wavelength multiplexed holographic storage in a sensitive photorefractive crystal using a visible-light tunable diode laser , 1993 .

[40]  Demetri Psaltis,et al.  A new method for holographic data storage in photopolymer films , 1994, Proceedings of 1994 Nonlinear Optics: Materials, Fundamentals and Applications.