Neural mechanisms of visuomotor coordination: the evolution of Rana computatrix

This paper reviews the “evolution” of Rana computatrix, a set of models of the neural architectures and functions that underlie visually guided behavior in frogs and toads. We introduce arrays of leaky integrator neurons as the style of neural modeling most used in Rana computatrix to date, and briefly discuss the technique of back-propagation. We then present the methodology of schema theory, which integrates perception and action by decomposing an overall behavior into the interaction of functional, neurally explicable, units called schemas. Finally, we present an overview of work on Rana computatrix, making use of data presented in this volume — not only on frogs and toads but comparative studies of other species — to point to future directions for research. We consider models for prey-selection, depth perception, detour behavior, approach and avoidance, tectal columns (for facilitation and pattern recognition), retina, habituation and memory, and generation of motor behavior.

[1]  J. Galsworthy A commentary , 1908 .

[2]  W von Seelen,et al.  [Neurobiology and system theory of a visual pattern recognition mechanism in the toad]. , 1973, Kybernetik.

[3]  Geoffrey E. Hinton,et al.  Learning internal representations by error propagation , 1986 .

[4]  Idan Segev,et al.  Methods in neuronal modeling: From synapses to networks , 1989 .

[5]  Michael A. Arbib,et al.  Visuomotor Coordination: Neural Models and Perceptual Robotics , 1989 .

[6]  Reza Shadmehr,et al.  A Neural Model for Generation of Some Behaviors in the Fictive Scratch Reflex , 1989, Neural Computation.

[7]  F ROSENBLATT,et al.  The perceptron: a probabilistic model for information storage and organization in the brain. , 1958, Psychological review.

[8]  D. Ingle 4 – Spatial Vision in Anurans , 1976 .

[9]  Michael A. Arbib,et al.  The metaphorical brain 2 - neural networks and beyond (2. ed.) , 1972 .

[10]  M. Arbib,et al.  The role of the tectal column in facilitation of amphibian prey- catching behavior: a neural model , 1982, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[11]  Parvati Dev,et al.  Perception of Depth Surfaces in Random-Dot Stereograms: A Neural Model , 1975, Int. J. Man Mach. Stud..

[12]  M. Arbib,et al.  A neural model of interactions subserving prey-predator discrimination and size preference in anuran amphibia. , 1985, Journal of theoretical biology.

[13]  W. Pitts,et al.  What the Frog's Eye Tells the Frog's Brain , 1959, Proceedings of the IRE.

[14]  Rodney A. Brooks,et al.  A Robust Layered Control Syste For A Mobile Robot , 2022 .

[15]  D. Ingle Focal attention in the frog: behavioral and physiological correlates. , 1975, Science.

[16]  G. Lázár Cellular Architecture and Connectivity of the Frog’s Optic Tectum and Pretectum , 1989 .

[17]  Thomas J. Anastasio,et al.  Distributed Parallel Processing in the Vestibulo-Oculomotor System , 1989, Neural Computation.

[18]  K. Lashley The problem of serial order in behavior , 1951 .

[19]  Michael A. Arbib,et al.  Depth and detours: an essay on visually guided behavior , 1990 .

[20]  G. Roth,et al.  Mathematical model and simulation of retina and tectum opticum of lower vertebrates , 1987, Acta biotheoretica.

[21]  R. Didday A model of visuomotor mechanisms in the frog optic tectum , 1976 .

[22]  Yillbyung Lee,et al.  A Neural Network Model of Frog Retin: A Discrete Time-Saving Approach , 1986 .

[23]  B. Betts The T5 Base Modulator Hypothesis: A Dynamic Model of T5 Neuron Function in Toads , 1989 .

[24]  James L. McClelland,et al.  Parallel distributed processing: explorations in the microstructure of cognition, vol. 1: foundations , 1986 .

[25]  E. N. Sokolov,et al.  Neuronal mechanisms of the orienting reflex , 1975 .

[26]  Donald H. House,et al.  Depth Perception in Frogs and Toads , 1989 .

[27]  O. I. Fukson,et al.  The spinal frog takes into account the scheme of its body during the wiping reflex. , 1980, Science.

[28]  G. Székely,et al.  Cellular and Synaptic Architecture of the Optic Tectum , 1976 .

[29]  T. Collett Stereopsis in toads , 1977, Nature.

[30]  Jörg-Peter Ewert,et al.  The Release of Visual Behavior in Toads: Stages of Parallel/Hierarchical Information Processing , 1989 .

[31]  W. Pitts,et al.  A Logical Calculus of the Ideas Immanent in Nervous Activity (1943) , 2021, Ideas That Created the Future.

[32]  S. Amari,et al.  Competition and Cooperation in Neural Nets , 1982 .

[33]  R Lara,et al.  A global model of the neural mechanisms responsible for visuomotor coordination in toads. , 1984, Journal of theoretical biology.

[34]  D. O. Hebb,et al.  The organization of behavior , 1988 .

[35]  D. Ingle Visual Releasers of Prey-Catching Behavior in Frogs and Toads , 1968 .

[36]  S. Kondrashev Neuroethology and color vision in amphibians , 1987, Behavioral and Brain Sciences.