When the Gomory-Chvátal closure coincides with the integer hull

Abstract Gomory–Chvatal cuts are prominent in integer programming. The Gomory–Chvatal closure of a polyhedron is the intersection of the half spaces defined by all its Gomory–Chvatal cuts. We prove that it is NP -hard to decide whether the Gomory–Chvatal closure of a rational polyhedron P is identical to the integer hull of P . An earlier version of this paper appeared in the proceedings of IPCO 2016.

[1]  Alexander Schrijver,et al.  Theory of linear and integer programming , 1986, Wiley-Interscience series in discrete mathematics and optimization.

[2]  William R. Pulleyblank,et al.  Facet Generating Techniques , 2008, Bonn Workshop of Combinatorial Optimization.

[3]  Oded Goldreich P, Np, and Np-Completeness: The Basics of Computational Complexity , 2010 .

[4]  Bert Gerards,et al.  Mixed-Integer Vertex Covers on Bipartite Graphs , 2007, IPCO.

[5]  Ralph E. Gomory,et al.  Outline of an Algorithm for Integer Solutions to Linear Programs and An Algorithm for the Mixed Integer Problem , 2010, 50 Years of Integer Programming.

[6]  R. Gomory Some polyhedra related to combinatorial problems , 1969 .

[7]  David S. Johnson,et al.  Computers and Intractability: A Guide to the Theory of NP-Completeness , 1978 .

[8]  Hendrik W. Lenstra,et al.  Integer Programming with a Fixed Number of Variables , 1983, Math. Oper. Res..

[9]  Alexander Schrijver,et al.  On Cutting Planes , 1980 .

[10]  Jack Edmonds,et al.  Maximum matching and a polyhedron with 0,1-vertices , 1965 .

[11]  Matteo Fischetti,et al.  {0, 1/2}-Chvátal-Gomory cuts , 1996, Math. Program..

[12]  Maurice Queyranne,et al.  On the Chvátal Rank of Certain Inequalities , 1999, IPCO.

[13]  Bert Gerards,et al.  Matrices with the edmonds—Johnson property , 1986, Comb..

[14]  Gérard Cornuéjols,et al.  Integer programming , 2014, Math. Program..

[15]  Robert R. Meyer,et al.  On the existence of optimal solutions to integer and mixed-integer programming problems , 1974, Math. Program..

[16]  Santosh S. Vempala,et al.  The Cutting Plane Method Is Polynomial for Perfect Matchings , 2012, 2012 IEEE 53rd Annual Symposium on Foundations of Computer Science.

[17]  Ted K. Ralphs,et al.  On the Complexity of Selecting Disjunctions in Integer Programming , 2010, SIAM J. Optim..

[18]  Alberto Del Pia,et al.  On matrices with the Edmonds-Johnson property arising from bidirected graphs , 2017, J. Comb. Theory B.

[19]  Gérard Cornuéjols,et al.  Stable sets, corner polyhedra and the Chvátal closure , 2009, Oper. Res. Lett..

[20]  M. R. Rao,et al.  Odd Minimum Cut-Sets and b-Matchings , 1982, Math. Oper. Res..

[21]  Yusuke Kobayashi,et al.  A simple algorithm for finding a maximum triangle-free 2-matching in subcubic graphs , 2010, Discret. Optim..

[22]  Matteo Fischetti,et al.  Optimizing over the first Chvátal closure , 2005, Math. Program..

[23]  Friedrich Eisenbrand,et al.  NOTE – On the Membership Problem for the Elementary Closure of a Polyhedron , 1999, Comb..

[24]  Paul Richard Bunch A simplex based primal-dual algorithm for the perfect b-matching problem: A study in combinatorial optimization algorithm engineering , 1997 .

[25]  I. Borosh,et al.  Bounds on positive integral solutions of linear Diophantine equations , 1976 .

[26]  Alexander Schrijver,et al.  Combinatorial optimization. Polyhedra and efficiency. , 2003 .

[27]  Yanjun Li,et al.  Polyhedron of triangle-free simple 2-matchings in subcubic graphs , 2013, Math. Program..

[28]  Gérard Cornuéjols,et al.  Deciding Emptiness of the Gomory-Chvátal Closure is NP-Complete, Even for a Rational Polyhedron Containing No Integer Point , 2016, IPCO.

[29]  William J. Cook,et al.  Chvátal closures for mixed integer programming problems , 1990, Math. Program..

[30]  Vasek Chvátal,et al.  Edmonds polytopes and a hierarchy of combinatorial problems , 1973, Discret. Math..

[31]  Alberto Del Pia,et al.  Half-Integral Vertex Covers on Bipartite Bidirected Graphs: Total Dual Integrality and Cut-Rank , 2009, SIAM J. Discret. Math..

[32]  Jack Edmonds,et al.  Matching, Euler tours and the Chinese postman , 1973, Math. Program..

[33]  Martin Grötschel,et al.  The ellipsoid method and its consequences in combinatorial optimization , 1981, Comb..