Color Display for Hyperspectral Imagery

This paper investigates RGB color composition schemes for hyperspectral imagery display. A three-channel composite inevitably loses a significant amount of information contained in the original high-dimensional data. The objective here is to display the useful information as distinctively as possible for high-class separability. To achieve this objective, it is important to find an effective data processing step prior to color display. A series of supervised and unsupervised data transformation and classification algorithms are reviewed, implemented, and compared for this purpose. The resulting color displays are evaluated in terms of class separability using a statistical detector and perceptual color distance. We demonstrate that the use of the data processing step can significantly improve the quality of color display, whereas data classification generally outperforms data transformation, although the implementation is more complicated. Several instructive suggestions for practitioners are provided.

[1]  G. Wyszecki,et al.  Color Science Concepts and Methods , 1982 .

[2]  Richard O. Duda,et al.  Pattern classification and scene analysis , 1974, A Wiley-Interscience publication.

[3]  Qian Du,et al.  A linear constrained distance-based discriminant analysis for hyperspectral image classification , 2001, Pattern Recognit..

[4]  J. Scott Tyo,et al.  Principal-components-based display strategy for spectral imagery , 2003, IEEE Trans. Geosci. Remote. Sens..

[5]  Derek M. Rogge,et al.  Iterative Spectral Unmixing for Optimizing Per-Pixel Endmember Sets , 2006, IEEE Transactions on Geoscience and Remote Sensing.

[6]  Di Liping,et al.  A “classification based method” for color‐composite image generation on an eight‐bit graphics workstation , 1991 .

[7]  J. M. Durand,et al.  An improved decorrelation method for the efficient display of multispectral data , 1989 .

[8]  Vassilis Tsagaris,et al.  Multispectral image fusion for improved RGB representation based on perceptual attributes , 2005 .

[9]  Qian Du,et al.  Real-time constrained linear discriminant analysis to target detection and classification in hyperspectral imagery , 2003, Pattern Recognit..

[10]  Aapo Hyvärinen,et al.  Fast and robust fixed-point algorithms for independent component analysis , 1999, IEEE Trans. Neural Networks.

[11]  W D Wright,et al.  Color Science, Concepts and Methods. Quantitative Data and Formulas , 1967 .

[12]  R. E. Roger A faster way to compute the noise-adjusted principal components transform matrix , 1994, IEEE Trans. Geosci. Remote. Sens..

[13]  Qian Lin,et al.  Displaying Multispectral Images On Video Ternunals In Rgb Color , 1990, 10th Annual International Symposium on Geoscience and Remote Sensing.

[14]  Gunther Wyszecki,et al.  Color Science: Concepts and Methods, Quantitative Data and Formulae, 2nd Edition , 2000 .

[15]  George A. Lampropoulos,et al.  Fusion of hyperspectral data using segmented PCT for color representation and classification , 2005, IEEE Transactions on Geoscience and Remote Sensing.

[16]  P. Switzer,et al.  A transformation for ordering multispectral data in terms of image quality with implications for noise removal , 1988 .

[17]  James T. Enns,et al.  Effective visualization of large multidimensional datasets , 1996 .

[18]  Ganesh S. Oak Information Visualization Introduction , 2022 .

[19]  Antonio J. Plaza,et al.  Impact of Initialization on Design of Endmember Extraction Algorithms , 2006, IEEE Transactions on Geoscience and Remote Sensing.

[20]  Maya R. Gupta,et al.  Linear Fusion of Image Sets for Display , 2007, IEEE Transactions on Geoscience and Remote Sensing.

[21]  Qian Du,et al.  Hyperspectral Imagery Visualization Using Double Layers , 2007, IEEE Transactions on Geoscience and Remote Sensing.

[22]  Fred A. Kruse,et al.  The Spectral Image Processing System (SIPS) - Interactive visualization and analysis of imaging spectrometer data , 1993 .

[23]  Chein-I Chang,et al.  Fully constrained least squares linear spectral mixture analysis method for material quantification in hyperspectral imagery , 2001, IEEE Trans. Geosci. Remote. Sens..

[24]  Chein-I Chang,et al.  Hyperspectral image classification and dimensionality reduction: an orthogonal subspace projection approach , 1994, IEEE Trans. Geosci. Remote. Sens..

[25]  Philip K. Robertson Visualizing color gamuts: a user interface for the effective use of perceptual color spaces in data displays , 1988, IEEE Computer Graphics and Applications.

[26]  Maya R. Gupta,et al.  Design goals and solutions for display of hyperspectral images , 2005, IEEE International Conference on Image Processing 2005.

[27]  Ottawa Kia Oy On Statistical Band Selection for Image Visualization , 2001 .

[28]  Paola Campadelli,et al.  A system for the automatic selection of conspicuous color sets for qualitative data display , 2001, IEEE Trans. Geosci. Remote. Sens..

[29]  John F. Arnold,et al.  Reliably estimating the noise in AVIRIS hyperspectral images , 1996 .

[30]  Qian Du,et al.  Interference and noise-adjusted principal components analysis , 1999, IEEE Trans. Geosci. Remote. Sens..