Two Step, Differential Evolution-Based Identification of Parameters of Jiles-Atherton Model of Magnetic Hysteresis Loops

Paper presents new method of identification of parameters of Jiles-Atherton model of magnetic hysteresis loops. The method utilizes physical principles of this model. In the described solution, parameters of anhysteretic curve are identified first. Next, parameters determining hysteresis are calculated on the base of set of hysteresis loops measured for different amplitudes of magnetizing field. Both identifications use differential evolutionary strategies method. The efficiency of proposed method is shown on the basis of parameters identification results for Mn-Zn ferrite for power applications.

[1]  Baodong Bai,et al.  Identification of the Jiles-Atherton model parameters using simulated annealing method , 2011, 2011 International Conference on Electrical Machines and Systems.

[2]  M. Gutowski,et al.  Anhysteretic Functions for the Jiles–Atherton Model , 2015, IEEE Transactions on Magnetics.

[3]  Roman Szewczyk,et al.  Reliability and Efficiency of Differential Evolution Based Method of Determination of Jiles-Atherton Model Parameters for X30CR13 Corrosion Resisting Martensitic Steel , 2014, J. Autom. Mob. Robotics Intell. Syst..

[4]  K. Hameyer,et al.  Model for Stress-Dependent Hysteresis in Electrical Steel Sheets Including Orthotropic Anisotropy , 2017, IEEE Transactions on Magnetics.

[5]  Lech Nowak,et al.  Application of a PSO algorithm for identification of the parameters of Jiles-Atherton hysteresis model , 2011 .

[6]  Krzysztof Chwastek,et al.  Identification of a hysteresis model parameters with genetic algorithms , 2006, Math. Comput. Simul..

[7]  Kye Yak See,et al.  Analysis of Ultra-Thin and Flexible Current Transformer Based on JA Hysteresis Model , 2017, IEEE Sensors Journal.

[8]  M. Sumner,et al.  Characteristics of Jiles–Atherton Model Parameters and Their Application to Transformer Inrush Current Simulation , 2008, IEEE Transactions on Magnetics.

[9]  D. Jiles,et al.  Theory of ferromagnetic hysteresis , 1986 .

[10]  Gabriele Maria Lozito,et al.  Improving the Jiles-Atherton model by introducing a full dynamic dependence of parameters , 2015, 2015 IEEE 1st International Forum on Research and Technologies for Society and Industry Leveraging a better tomorrow (RTSI).

[11]  Andreas Lindner,et al.  A simple method for the parameter identification of the Jiles-Atherton model using only symmetric hysteresis loops , 2013, IECON 2013 - 39th Annual Conference of the IEEE Industrial Electronics Society.

[12]  Ovidiu Florin Caltun,et al.  Jiles-Atherton Magnetic Hysteresis Parameters Identification , 2011 .

[13]  R. Harrison,et al.  On physical aspects of the Jiles-Atherton hysteresis models , 2012 .

[14]  Qing Yang,et al.  Improved low-frequency transformer model based on Jiles–Atherton hysteresis theory , 2017 .

[15]  David Jiles,et al.  A model of anisotropic anhysteretic magnetization , 1996 .

[16]  David Jiles,et al.  Theory of ferromagnetic hysteresis: determination of model parameters from experimental hysteresis loops , 1989 .

[17]  Roman Szewczyk,et al.  Validation of the Anhysteretic Magnetization Model for Soft Magnetic Materials with Perpendicular Anisotropy , 2014, Materials.