Nanorod Surface Plasmon Enhancement of Laser-Induced Ultrafast Demagnetization

[1]  Werner Scholz,et al.  Plasmonic near-field transducer for heat-assisted magnetic recording , 2014 .

[2]  R. Gelfand,et al.  Effect of surface roughness on self-assembled monolayer plasmonic ruler in nonlocal regime. , 2014, Optics express.

[3]  J. Lüning,et al.  Investigating the role of superdiffusive currents in laser induced demagnetization of ferromagnets with nanoscale magnetic domains , 2014, Scientific Reports.

[4]  Richard A. Vaia,et al.  Engineering the Optical Properties of Gold Nanorods: Independent Tuning of Surface Plasmon Energy, Extinction Coefficient, and Scattering Cross Section , 2014 .

[5]  Yuan Wang,et al.  A two-stage heating scheme for heat assisted magnetic recording , 2014 .

[6]  Romain Quidant,et al.  Thermo‐plasmonics: using metallic nanostructures as nano‐sources of heat , 2013 .

[7]  Justin M. Shaw,et al.  Ultrafast element-specific magnetization dynamics of complex magnetic materials on a table-top , 2012 .

[8]  M. Cinchetti,et al.  Temperature Dependence of Laser-Induced Demagnetization in Ni: A Key for Identifying the Underlying Mechanism , 2012 .

[9]  Chengwu An,et al.  Relationship Between Near Field Optical Transducer Laser Absorption and Its Efficiency , 2012, IEEE Transactions on Magnetics.

[10]  David R. Smith,et al.  Probing dynamically tunable localized surface plasmon resonances of film-coupled nanoparticles by evanescent wave excitation. , 2012, Nano letters.

[11]  P. Zeitoun,et al.  Laser-induced ultrafast demagnetization in the presence of a nanoscale magnetic domain network , 2012, Nature Communications.

[12]  A. Boltasseva,et al.  Oxides and nitrides as alternative plasmonic materials in the optical range [Invited] , 2011 .

[13]  Hervé Rigneault,et al.  Femtosecond-pulsed optical heating of gold nanoparticles , 2011 .

[14]  Hans Fangohr,et al.  Joule heating in nanowires , 2010, 1012.4304.

[15]  U. Atxitia,et al.  Ultrafast magnetization dynamics rates within the Landau-Lifshitz-Bloch model , 2010, 1011.5054.

[16]  T. Rasing,et al.  Ultrafast optical manipulation of magnetic order , 2010 .

[17]  Jordan A. Katine,et al.  Magnetic recording at 1.5 Pb m −2 using an integrated plasmonic antenna , 2010 .

[18]  Zongzhi Zhang,et al.  Laser-induced Magnetization Dynamics for L10-FePt Thin Films with Perpendicular Anisotropy , 2010 .

[19]  M. Cinchetti,et al.  Explaining the paradoxical diversity of ultrafast laser-induced demagnetization. , 2010, Nature materials.

[20]  S. Leone,et al.  Nanometer-scale size dependent imaging of cetyl trimethyl ammonium bromide (CTAB) capped and uncapped gold nanoparticles by apertureless near-field optical microscopy , 2009 .

[21]  Mohan Srinivasarao,et al.  Colloidal dispersion of gold nanorods: Historical background, optical properties, seed-mediated synthesis, shape separation and self-assembly , 2009 .

[22]  Romain Quidant,et al.  Heat generation in plasmonic nanostructures: Influence of morphology , 2009 .

[23]  Duane C. Karns,et al.  Heat-assisted magnetic recording by a near-field transducer with efficient optical energy transfer , 2009 .

[24]  Ronald Walsworth,et al.  Surface plasmon resonance enhanced magneto-optics (SuPREMO): Faraday rotation enhancement in gold-coated iron oxide nanocrystals. , 2009, Nano letters.

[25]  A. Govorov,et al.  Experimental and theoretical studies of light-to-heat conversion and collective heating effects in metal nanoparticle solutions. , 2009, Nano letters.

[26]  Luke P. Lee,et al.  Remote optical switch for localized and selective control of gene interference. , 2009, Nano letters.

[27]  M. Fatih Erden,et al.  Heat Assisted Magnetic Recording , 2008, Proceedings of the IEEE.

[28]  R. K. Harrison,et al.  Thermal analysis of gold nanorods heated with femtosecond laser pulses , 2008, Journal of physics D: Applied physics.

[29]  David R. Smith,et al.  Distance-dependent plasmon resonant coupling between a gold nanoparticle and gold film. , 2008, Nano letters.

[30]  P. Bruno,et al.  Curie temperatures of fcc and bcc nickel and permalloy: Supercell and Green's function methods , 2008 .

[31]  Denise Hinzke,et al.  Micromagnetic modeling of laser-induced magnetization dynamics using the Landau-Lifshitz-Bloch equation , 2007 .

[32]  W. Eberhardt,et al.  Femtosecond modification of electron localization and transfer of angular momentum in nickel. , 2007, Nature materials.

[33]  C. Noguez Surface Plasmons on Metal Nanoparticles: The Influence of Shape and Physical Environment , 2007 .

[34]  J. Bigot,et al.  Femtosecond spectrotemporal magneto-optics. , 2004, Physical review letters.

[35]  Arto V. Nurmikko,et al.  Strongly Interacting Plasmon Nanoparticle Pairs: From Dipole−Dipole Interaction to Conductively Coupled Regime , 2004 .

[36]  J. Stöhr,et al.  The ultimate speed of magnetic switching in granular recording media , 2004, Nature.

[37]  Brahim Lounis,et al.  Photothermal Imaging of Nanometer-Sized Metal Particles Among Scatterers , 2002, Science.

[38]  M. El-Sayed,et al.  Laser-Induced Shape Changes of Colloidal Gold Nanorods Using Femtosecond and Nanosecond Laser Pulses , 2000 .

[39]  Merle,et al.  Ultrafast spin dynamics in ferromagnetic nickel. , 1996, Physical review letters.

[40]  R. Shelby,et al.  Magnetic domain imaging with a scanning Kerr effect microscope , 1986 .

[41]  R. W. Christy,et al.  Optical Constants of the Noble Metals , 1972 .

[42]  H. Stanley,et al.  Introduction to Phase Transitions and Critical Phenomena , 1972 .

[43]  G. Armelles,et al.  Magnetoplasmonics: Magnetoplasmonics: Combining Magnetic and Plasmonic Functionalities (Advanced Optical Materials 1/2013) , 2013 .

[44]  J. Bland,et al.  Ultrathin Magnetic Structures III , 1994 .