Dynamic DNA nanotechnology using strand-displacement reactions.

The specificity and predictability of Watson-Crick base pairing make DNA a powerful and versatile material for engineering at the nanoscale. This has enabled the construction of a diverse and rapidly growing set of DNA nanostructures and nanodevices through the programmed hybridization of complementary strands. Although it had initially focused on the self-assembly of static structures, DNA nanotechnology is now also becoming increasingly attractive for engineering systems with interesting dynamic properties. Various devices, including circuits, catalytic amplifiers, autonomous molecular motors and reconfigurable nanostructures, have recently been rationally designed to use DNA strand-displacement reactions, in which two strands with partial or full complementarity hybridize, displacing in the process one or more pre-hybridized strands. This mechanism allows for the kinetic control of reaction pathways. Here, we review DNA strand-displacement-based devices, and look at how this relatively simple mechanism can lead to a surprising diversity of dynamic behaviour.

[1]  R. W. Davis,et al.  A physical study by electron microscopy of the terminally reptitious, circularly permuted DNA from the coliphage particles of Escherichia coli 15. , 1970, Journal of molecular biology.

[2]  M S Meselson,et al.  A general model for genetic recombination. , 1975, Proceedings of the National Academy of Sciences of the United States of America.

[3]  R. Wiegand,et al.  Uptake of homologous single-stranded fragments by superhelical DNA. IV. Branch migration. , 1977, Journal of molecular biology.

[4]  C. Green,et al.  Reassociation rate limited displacement of DNA strands by branch migration. , 1981, Nucleic acids research.

[5]  N. Seeman Nucleic acid junctions and lattices. , 1982, Journal of theoretical biology.

[6]  N C Seeman,et al.  Simulation of double-stranded branch point migration. , 1987, Biophysical journal.

[7]  N. Seeman De novo design of sequences for nucleic acid structural engineering. , 1990, Journal of biomolecular structure & dynamics.

[8]  J. Wetmur,et al.  Branch capture reactions: effect of recipient structure. , 1990, Nucleic acids research.

[9]  N. Seeman,et al.  Synthesis from DNA of a molecule with the connectivity of a cube , 1991, Nature.

[10]  W. L. Jorgensen Supramolecular chemistry. , 1993, Proceedings of the National Academy of Sciences of the United States of America.

[11]  L M Adleman,et al.  Molecular computation of solutions to combinatorial problems. , 1994, Science.

[12]  P. Hsieh,et al.  The kinetics of spontaneous DNA branch migration. , 1994, Proceedings of the National Academy of Sciences of the United States of America.

[13]  S. Agrawal,et al.  Sequence identity of the n-1 product of a synthetic oligonucleotide. , 1995, Nucleic acids research.

[14]  Sanjay Tyagi,et al.  Molecular Beacons: Probes that Fluoresce upon Hybridization , 1996, Nature Biotechnology.

[15]  Kalim U. Mir A restricted genetic alphabet for DNA computing , 1996, DNA Based Computers.

[16]  J. Storhoff,et al.  Selective colorimetric detection of polynucleotides based on the distance-dependent optical properties of gold nanoparticles. , 1997, Science.

[17]  G. F. Joyce,et al.  A general purpose RNA-cleaving DNA enzyme. , 1997, Proceedings of the National Academy of Sciences of the United States of America.

[18]  Eric B. Baum,et al.  DNA Based Computers II , 1998 .

[19]  I. Epstein,et al.  An Introduction to Nonlinear Chemical Dynamics , 1998 .

[20]  N. Seeman,et al.  Design and self-assembly of two-dimensional DNA crystals , 1998, Nature.

[21]  P. Lizardi,et al.  Mutation detection and single-molecule counting using isothermal rolling-circle amplification , 1998, Nature Genetics.

[22]  N. Seeman,et al.  A nanomechanical device based on the B–Z transition of DNA , 1999, Nature.

[23]  A P Mills,et al.  DNA implementation of addition in which the input strands are separate from the operator strands. , 1999, Bio Systems.

[24]  A. Vologodskii,et al.  The kinetics of oligonucleotide replacements. , 2000, Journal of molecular biology.

[25]  P. Schuster,et al.  RNA folding at elementary step resolution. , 1999, RNA.

[26]  A. Turberfield,et al.  A DNA-fuelled molecular machine made of DNA , 2022 .

[27]  D. Crothers,et al.  Nucleic Acids: Structures, Properties, and Functions , 2000 .

[28]  E. Shapiro,et al.  Programmable and autonomous computing machine made of biomolecules , 2001, Nature.

[29]  F. Simmel,et al.  Using DNA to construct and power a nanoactuator. , 2001, Physical review. E, Statistical, nonlinear, and soft matter physics.

[30]  N. Seeman,et al.  A robust DNA mechanical device controlled by hybridization topology , 2002, Nature.

[31]  Darko Stefanovic,et al.  Deoxyribozyme-based logic gates. , 2002, Journal of the American Chemical Society.

[32]  Qiuping Guo,et al.  A new class of homogeneous nucleic acid probes based on specific displacement hybridization. , 2002, Nucleic acids research.

[33]  Bernard Yurke,et al.  A DNA-based molecular device switchable between three distinct mechanical states , 2002 .

[34]  Michael Zuker,et al.  Mfold web server for nucleic acid folding and hybridization prediction , 2003, Nucleic Acids Res..

[35]  J. Reif,et al.  A two-state DNA lattice switched by DNA nanoactuator. , 2003, Angewandte Chemie.

[36]  Michael Petersen,et al.  LNA: a versatile tool for therapeutics and genomics. , 2003, Trends in biotechnology.

[37]  A. Turberfield,et al.  DNA fuel for free-running nanomachines. , 2003, Physical review letters.

[38]  Darko Stefanovic,et al.  A deoxyribozyme-based molecular automaton , 2003, Nature Biotechnology.

[39]  N. Seeman,et al.  A precisely controlled DNA biped walking device , 2004 .

[40]  Bernard Yurke,et al.  Using DNA to Power Nanostructures , 2003, Genetic Programming and Evolvable Machines.

[41]  D. C. Lin,et al.  Mechanical properties of a reversible, DNA-crosslinked polyacrylamide hydrogel. , 2004, Journal of biomechanical engineering.

[42]  E. Winfree,et al.  Algorithmic Self-Assembly of DNA Sierpinski Triangles , 2004, PLoS biology.

[43]  J. Reif,et al.  A unidirectional DNA walker that moves autonomously along a track. , 2004, Angewandte Chemie.

[44]  Chengde Mao,et al.  Molecular gears: a pair of DNA circles continuously rolls against each other. , 2004, Journal of the American Chemical Society.

[45]  Christof M Niemeyer,et al.  Reversible switching of DNA-gold nanoparticle aggregation. , 2004, Angewandte Chemie.

[46]  E. Shapiro,et al.  An autonomous molecular computer for logical control of gene expression , 2004, Nature.

[47]  J. SantaLucia,et al.  The thermodynamics of DNA structural motifs. , 2004, Annual review of biophysics and biomolecular structure.

[48]  N. Pierce,et al.  A synthetic DNA walker for molecular transport. , 2004, Journal of the American Chemical Society.

[49]  Gonen Ashkenasy,et al.  Boolean logic functions of a synthetic peptide network. , 2004, Journal of the American Chemical Society.

[50]  David R. Liu,et al.  DNA-Templated Organic Synthesis and Selection of a Library of Macrocycles , 2004, Science.

[51]  N. Seeman,et al.  DNA-Templated Self-Assembly of Metallic Nanocomponent Arrays on a Surface , 2004 .

[52]  Robert M. Dirks,et al.  Triggered amplification by hybridization chain reaction. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[53]  Robert M. Dirks,et al.  Paradigms for computational nucleic acid design. , 2004, Nucleic acids research.

[54]  Farren J. Isaacs,et al.  Engineered riboregulators enable post-transcriptional control of gene expression , 2004, Nature Biotechnology.

[55]  Masami Hagiya,et al.  Chain Reaction Systems Based on Loop Dissociation of DNA , 2005, DNA.

[56]  Harry M. T. Choi,et al.  Topological constraints in nucleic acid hybridization kinetics , 2005, Nucleic acids research.

[57]  Darko Stefanovic,et al.  Designing Nucleotide Sequences for Computation: A Survey of Constraints , 2005, DNA.

[58]  R. Breaker,et al.  Computational design and experimental validation of oligonucleotide-sensing allosteric ribozymes , 2005, Nature Biotechnology.

[59]  P. Yin,et al.  A DNAzyme that walks processively and autonomously along a one-dimensional track. , 2005, Angewandte Chemie.

[60]  Lloyd M. Smith,et al.  Thermodynamically based DNA strand design , 2005, Nucleic acids research.

[61]  Lauren K. Wolf,et al.  Secondary structure effects on DNA hybridization kinetics: a solution versus surface comparison , 2006, Nucleic acids research.

[62]  Darko Stefanovic,et al.  Behavior of polycatalytic assemblies in a substrate-displaying matrix. , 2006, Journal of the American Chemical Society.

[63]  P. Rothemund Folding DNA to create nanoscale shapes and patterns , 2006, Nature.

[64]  E. Winfree,et al.  Construction of an in vitro bistable circuit from synthetic transcriptional switches , 2006, Molecular systems biology.

[65]  N. Seeman,et al.  Operation of a DNA Robot Arm Inserted into a 2D DNA Crystalline Substrate , 2006, Science.

[66]  Farren J. Isaacs,et al.  RNA synthetic biology , 2006, Nature Biotechnology.

[67]  Juewen Liu,et al.  Functional DNA nanotechnology: emerging applications of DNAzymes and aptamers. , 2006, Current opinion in biotechnology.

[68]  Darko Stefanovic,et al.  Deoxyribozyme-based three-input logic gates and construction of a molecular full adder. , 2006, Biochemistry.

[69]  G. Seelig,et al.  Enzyme-Free Nucleic Acid Logic Circuits , 2022 .

[70]  Andrew J Turberfield,et al.  DNA hairpins: fuel for autonomous DNA devices. , 2006, Biophysical journal.

[71]  Erik Winfree,et al.  Catalyzed relaxation of a metastable DNA fuel. , 2006, Journal of the American Chemical Society.

[72]  Nadrian C Seeman,et al.  RNA used to control a DNA rotary nanomachine. , 2006, Nano letters.

[73]  Robert M. Dirks,et al.  An autonomous polymerization motor powered by DNA hybridization , 2007, Nature Nanotechnology.

[74]  Erik Winfree,et al.  Thermodynamic Analysis of Interacting Nucleic Acid Strands , 2007, SIAM Rev..

[75]  Wendell A Lim,et al.  Synthetic biology: lessons from the history of synthetic organic chemistry , 2007, Nature Chemical Biology.

[76]  Francesco Zerbetto,et al.  Synthetic molecular motors and mechanical machines. , 2007, Angewandte Chemie.

[77]  A. Turberfield,et al.  DNA nanomachines. , 2007, Nature nanotechnology.

[78]  A. P. de Silva,et al.  Molecular logic and computing. , 2007, Nature nanotechnology.

[79]  E. Winfree,et al.  Synthesis of crystals with a programmable kinetic barrier to nucleation , 2007, Proceedings of the National Academy of Sciences.

[80]  Brian M. Frezza,et al.  Modular multi-level circuits from immobilized DNA-based logic gates. , 2007, Journal of the American Chemical Society.

[81]  E. Klavins,et al.  An improved autonomous DNA nanomotor. , 2007, Nano letters.

[82]  D. Y. Zhang,et al.  Engineering Entropy-Driven Reactions and Networks Catalyzed by DNA , 2007, Science.

[83]  Milan N Stojanovic,et al.  Networking particles over distance using oligonucleotide-based devices. , 2007, Journal of the American Chemical Society.

[84]  Faisal A. Aldaye,et al.  Assembling Materials with DNA as the Guide , 2008, Science.

[85]  Harry M. T. Choi,et al.  Programming biomolecular self-assembly pathways , 2008, Nature.

[86]  Erik Winfree,et al.  DNA as a universal substrate for chemical kinetics , 2009, Proceedings of the National Academy of Sciences.

[87]  Jie Yan,et al.  A contractile DNA machine. , 2008, Angewandte Chemie.

[88]  Ruojie Sha,et al.  A DNA-based nanomechanical device with three robust states , 2008, Proceedings of the National Academy of Sciences.

[89]  Russell P. Goodman,et al.  Reconfigurable, braced, three-dimensional DNA nanostructures. , 2008, Nature nanotechnology.

[90]  Erik Winfree,et al.  Dynamic allosteric control of noncovalent DNA catalysis reactions. , 2008, Journal of the American Chemical Society.

[91]  Lulu Qian,et al.  A Simple DNA Gate Motif for Synthesizing Large-Scale Circuits , 2008, DNA.

[92]  A. Turberfield,et al.  Coordinated chemomechanical cycles: a mechanism for autonomous molecular motion. , 2008, Physical review letters.

[93]  M. Win,et al.  Higher-Order Cellular Information Processing with Synthetic RNA Devices , 2008, Science.

[94]  Itamar Willner,et al.  DNAzymes for sensing, nanobiotechnology and logic gate applications. , 2008, Chemical Society reviews.

[95]  J. Kjems,et al.  Self-assembly of a nanoscale DNA box with a controllable lid , 2009, Nature.

[96]  Andrew D. Ellington,et al.  Modelling amorphous computations with transcription networks , 2009, Journal of The Royal Society Interface.

[97]  A. Turberfield,et al.  Mechanism for a directional, processive, and reversible DNA motor. , 2009, Small.

[98]  M Reza Ghadiri,et al.  Universal translators for nucleic acid diagnosis. , 2009, Journal of the American Chemical Society.

[99]  D. Y. Zhang,et al.  Control of DNA strand displacement kinetics using toehold exchange. , 2009, Journal of the American Chemical Society.

[100]  D. Ly,et al.  Strand invasion of extended, mixed-sequence B-DNA by gammaPNAs. , 2009, Journal of the American Chemical Society.

[101]  Luca Cardelli,et al.  A programming language for composable DNA circuits , 2009, Journal of The Royal Society Interface.

[102]  Andrew J. Turberfield,et al.  Kinetically controlled self-assembly of DNA oligomers. , 2009, Journal of the American Chemical Society.

[103]  E. Kool,et al.  Redesigning the architecture of the base pair: toward biochemical and biological function of new genetic sets. , 2009, Chemistry & biology.

[104]  Ruojie Sha,et al.  A Bipedal DNA Brownian Motor with Coordinated Legs , 2009, Science.

[105]  Dongsheng Liu,et al.  DNA Nanomachines and Their Functional Evolution , 2009 .

[106]  Robert Carlson,et al.  The changing economics of DNA synthesis , 2009, Nature Biotechnology.

[107]  Priscilla E. M. Purnick,et al.  The second wave of synthetic biology: from modules to systems , 2009, Nature Reviews Molecular Cell Biology.

[108]  Luca Cardelli Strand Algebras for DNA Computing , 2009, DNA.

[109]  Xi Chen,et al.  Shaping up nucleic acid computation. , 2010, Current opinion in biotechnology.

[110]  Erik Winfree,et al.  Self-assembly of carbon nanotubes into two-dimensional geometries using DNA origami templates. , 2010, Nature nanotechnology.

[111]  Robert M. Dirks,et al.  Selective cell death mediated by small conditional RNAs , 2010, Proceedings of the National Academy of Sciences.

[112]  Chenxiang Lin,et al.  Knitting Complex Weaves with Dna Origami This Review Comes from a Themed Issue on Nucleic Acids Edited Dna and the Biosynthetic Advantage Single-layer Dna Origami Multi-layer Dna Origami Scaling to Greater Complexity Conclusions and Future Outlook , 2022 .

[113]  Erik Winfree,et al.  Molecular robots guided by prescriptive landscapes , 2010, Nature.

[114]  Erik Winfree,et al.  Robustness and modularity properties of a non-covalent DNA catalytic reaction , 2010, Nucleic acids research.

[115]  N. Seeman,et al.  A Proximity-Based Programmable DNA Nanoscale Assembly Line , 2010, Nature.

[116]  Zhen Xie,et al.  Logic integration of mRNA signals by an RNAi-based molecular computer , 2010, Nucleic acids research.

[117]  N. Seeman Nanomaterials based on DNA. , 2010, Annual review of biochemistry.

[118]  K Oishi,et al.  Biomolecular implementation of linear I/O systems. , 2011, IET systems biology.

[119]  Elham Kashefi,et al.  Preface to special issue: Developments In Computational Models 2010 , 2013, Math. Struct. Comput. Sci..

[120]  Luca Cardelli Two-domain DNA strand displacement , 2013, Math. Struct. Comput. Sci..