Influence of encapsulation temperature on Ge:P δ -doped layers

We present a systematic study of the influence of the encapsulation temperature on dopant confinement and electrical properties of Ge:P {delta}-doped layers. For increasing growth temperature we observe an enhancement of the electrical properties accompanied by an increased segregation of the phosphorous donors, resulting in a slight broadening of the {delta} layer. We demonstrate that a step-flow growth achieved at {approx}530 deg. C provides the best compromise between high crystal quality and minimal dopant redistribution, with an electron mobility {approx}128 cm{sup 2}/Vs at a carrier density 1.3x10{sup 14} cm{sup -2}, and a 4.2 K phase coherence length of {approx}180 nm.

[1]  G. Capellini,et al.  Atomic-scale patterning of hydrogen terminated Ge(001) by scanning tunneling microscopy , 2009, Nanotechnology.

[2]  G. Capellini,et al.  Ultradense phosphorus in germanium delta-doped layers , 2009, 0912.0751.

[3]  Y. Kamata,et al.  High-k/Ge MOSFETs for future nanoelectronics , 2008 .

[4]  Cor L. Claeys,et al.  Germanium-based technologies : from materials to devices , 2007 .

[5]  Martin M. Frank,et al.  Germanium channel MOSFETs: Opportunities and challenges , 2006, IBM J. Res. Dev..

[6]  L. Oberbeck,et al.  Influence of doping density on electronic transport in degenerate Si:Pδ-doped layers , 2006 .

[7]  L. Oberbeck,et al.  Effect of encapsulation temperature on Si:P δ-doped layers , 2004 .

[8]  S. R. Schofield,et al.  Phosphine dissociation on the Si(001) surface. , 2004, Physical review letters.

[9]  Michelle Y. Simmons,et al.  Toward Atomic-Scale Device Fabrication in Silicon Using Scanning Probe Microscopy , 2004 .

[10]  Y. Foo,et al.  Mechanism for epitaxial breakdown during low-temperature Ge(001) molecular beam epitaxy , 2003 .

[11]  S. R. Schofield,et al.  Encapsulation of phosphorus dopants in silicon for the fabrication of a quantum computer , 2002, cond-mat/0208355.

[12]  Ralph K. Cavin,et al.  On designing sub-70-nm semiconductor materials and processes , 2002 .

[13]  J. Tucker,et al.  Ultradense phosphorous delta layers grown into silicon from PH3 molecular precursors , 2002 .

[14]  H. Tsai,et al.  Comparison of thermal reactions of phosphine on Ge(1 0 0) and Si(1 0 0) by high-resolution core-level photoemission , 2001 .

[15]  K. Janda,et al.  Recombinative desorption of hydrogen from the Ge(100)–(2×1) surface: A laser‐induced desorption study , 1995 .

[16]  D. J. Eaglesham,et al.  Semiconductor molecular‐beam epitaxy at low temperatures , 1995 .

[17]  Greene,et al.  Surface morphology during multilayer epitaxial growth of Ge(001). , 1995, Physical review letters.

[18]  J. Harris Delta-doping of semiconductors , 1993 .

[19]  A. I. Larkin,et al.  Spin-Orbit Interaction and Magnetoresistance in the Two Dimensional Random System , 1980 .

[20]  F. Trumbore,et al.  Solid solubilities of impurity elements in germanium and silicon , 1960 .