The importance of calorimetry for highly-boosted jet substructure
暂无分享,去创建一个
Andreas Hinzmann | Meenakshi Narain | Caterina Vernieri | Jesse Thaler | Evan Coleman | Nhan Tran | Marat Freytsis | N. Tran | A. Hinzmann | M. Narain | M. Freytsis | C. Vernieri | J. Thaler | Evan Austen Coleman
[1] J. Thaler,et al. Identifying boosted objects with N-subjettiness , 2010, 1011.2268.
[2] J. M. Butterworth,et al. WW scattering at the LHC , 2002, hep-ph/0201098.
[3] M. Schwartz,et al. Jet Cleansing: Pileup Removal at High Luminosity , 2013, 1309.4777.
[4] T. Tuuva,et al. Search for massive resonances decaying into WW, WZ or ZZ bosons in proton-proton collisions at s=13$$ \sqrt{s}=13 $$ TeV , 2017 .
[5] M. Schwartz,et al. Quark and gluon tagging at the LHC. , 2011, Physical review letters.
[6] S. M. Etesami,et al. Search for Low Mass Vector Resonances Decaying to Quark-Antiquark Pairs in Proton-Proton Collisions at sqrt[s]=13 TeV. , 2017, Physical review letters.
[7] M. Cacciari,et al. FastJet user manual , 2011, 1111.6097.
[8] Michael Spannowsky,et al. Tagging highly boosted top quarks. , 2013, 1308.0540.
[9] P. Skands,et al. Tuning PYTHIA 8.1: the Monash 2013 tune , 2014, 1404.5630.
[10] S. Forte,et al. Parton distributions with LHC data , 2012, 1207.1303.
[11] David W. Miller,et al. Towards an understanding of the correlations in jet substructure , 2015, The European Physical Journal C.
[12] M. Cacciari,et al. Pileup subtraction for jet shapes. , 2012, Physical review letters.
[13] D. Neill,et al. Power counting to better jet observables , 2014, 1409.6298.
[14] M. Schwartz,et al. Quark and gluon jet substructure , 2012, Journal of High Energy Physics.
[15] W. Waalewijn,et al. Gaining (mutual) information about quark/gluon discrimination , 2014, Journal of High Energy Physics.
[16] M. Seymour. Searches for new particles using cone and cluster jet algorithms: a comparative study , 1994 .
[17] D. Neill,et al. Building a Better Boosted Top Tagger , 2014, 1411.0665.
[18] W. Waalewijn. Calculating the charge of a jet , 2012, 1209.3019.
[19] Lian-tao Wang,et al. Jet trimming , 2009, 0912.1342.
[20] J. T. Childers,et al. Light-quark and gluon jet discrimination in [Formula: see text] collisions at [Formula: see text] with the ATLAS detector. , 2014, The European physical journal. C, Particles and fields.
[21] C. Collaboration,et al. Particle-flow reconstruction and global event description with the CMS detector , 2017, 1706.04965.
[22] A. Marchioro,et al. Performance of the Aleph Detector At Lep , 1995 .
[23] P. Baldi,et al. Jet Substructure Classification in High-Energy Physics with Deep Neural Networks , 2016, 1603.09349.
[24] D. Neill,et al. Analytic boosted boson discrimination , 2015, 1507.03018.
[25] S. D. Ellis,et al. Jet substructure at the Tevatron and LHC: new results, new tools, new benchmarksReport prepared by the participants of the BOOST 2011 Workshop at Princeton University, 22–26 May 2011. L Asquith (lasquith@hep.anl.gov), S Rappoccio (rappocc@fnal.gov) and C K Vermilion (verm@uw.edu), editors. , 2011, 1201.0008.
[26] M. Schwartz,et al. Jet charge at the LHC. , 2012, Physical review letters.
[27] A. Larkoski,et al. How much information is in a jet? , 2017, Journal of High Energy Physics.
[28] J. Thaler,et al. Maximizing boosted top identification by minimizing N-subjettiness , 2011, 1108.2701.
[29] J. A. Aguilar-Saavedra. Stealth multiboson signals , 2017, 1705.07885.
[30] S. D. Ellis,et al. Boosted objects: a probe of beyond the standard model physics , 2010, 1012.5412.
[31] P. Harris,et al. Pileup per particle identification , 2014, 1407.6013.
[32] Scoap. Jet reconstruction and performance using particle flow with the ATLAS Detector , 2017 .
[33] J. Friedman. Greedy function approximation: A gradient boosting machine. , 2001 .
[34] M. Selvaggi,et al. Tracking down hyper-boosted top quarks , 2015, Journal of High Energy Physics.
[35] M. Procura,et al. Calculating Track Thrust with Track Functions , 2013, 1306.6630.
[36] Luke de Oliveira,et al. Jet-images — deep learning edition , 2015, Journal of High Energy Physics.
[37] Patrick T. Komiske,et al. Pileup Mitigation with Machine Learning (PUMML) , 2017, Journal of High Energy Physics.
[38] M. Procura,et al. Calculating track-based observables for the LHC. , 2013, Physical review letters.
[39] João Paulo Teixeira,et al. The CMS experiment at the CERN LHC , 2008 .
[40] S. Bressler,et al. Hadronic calorimeter shower size: Challenges and opportunities for jet substructure in the superboosted regime , 2015, 1506.02656.
[41] J. Butterworth,et al. Ju n 20 08 Jet substructure as a new Higgs search channel at the LHC , 2008 .
[42] M. Spannowsky,et al. Tracking New Physics at the LHC and beyond , 2015, 1505.01921.
[43] M. Schwartz,et al. Jet cleansing: Separating data from secondary collision induced radiation at high luminosity , 2014 .
[44] T. Tuuva,et al. Identification techniques for highly boosted W bosons that decay into hadrons , 2014 .
[45] A. Goshaw. The ATLAS Experiment at the CERN Large Hadron Collider , 2008 .
[46] M. D. Pietra,et al. Measurement of jet charge in dijet events from √s = 8 TeV p p collisions with the ATLAS detector , 2016 .
[47] G. Salam,et al. Towards an understanding of jet substructure , 2013, 1307.0007.
[48] J. Butterworth,et al. Reconstructing Sparticle Mass Spectra using Hadronic Decays , 2007, hep-ph/0702150.
[49] Pierre Baldi,et al. Decorrelated jet substructure tagging using adversarial neural networks , 2017, Physical Review D.
[50] R. Frederix,et al. The automated computation of tree-level and next-to-leading order differential cross sections, and their matching to parton shower simulations , 2014, 1405.0301.
[51] S. D. Ellis,et al. Recombination algorithms and jet substructure: Pruning as a tool for heavy particle searches , 2009, 0912.0033.
[52] M. Cacciari,et al. The anti-$k_t$ jet clustering algorithm , 2008, 0802.1189.
[53] S. D. Ellis,et al. Boosted objects and jet substructure at the LHC. Report of BOOST2012, held at IFIC Valencia, 23rd–27th of July 2012 , 2013, 1311.2708.
[54] I. Moult,et al. New angles on energy correlation functions , 2016, Journal of High Energy Physics.
[55] Atlas Collaboration. Light-quark and gluon jet discrimination in pp collisions at $\sqrt{s}$ = 7 TeV with the ATLAS detector , 2014, 1405.6583.
[56] N. Tran,et al. Initial performance studies of a general-purpose detector for multi-TeV physics at a 100 TeV pp collider , 2016, 1612.07291.
[57] G. Salam,et al. Energy correlation functions for jet substructure , 2013, 1305.0007.
[58] M. Cacciari,et al. SoftKiller, a particle-level pileup removal method , 2014, The European physical journal. C, Particles and fields.
[59] M. Cacciari,et al. Dispelling the N3 myth for the kt jet-finder , 2005, hep-ph/0512210.
[60] Peter Skands,et al. An introduction to PYTHIA 8.2 , 2014, Comput. Phys. Commun..
[61] M. P. Casado,et al. Measurement of the charged-particle multiplicity inside jets from $$\sqrt{s}=8$$s=8$${\mathrm{TeV}}$$TeV pp collisions with the ATLAS detector , 2016, The European physical journal. C, Particles and fields.
[62] G. Salam,et al. Dichroic subjettiness ratios to distinguish colour flows in boosted boson tagging , 2016, 1612.03917.
[63] P. Harris,et al. Thinking outside the ROCs: Designing Decorrelated Taggers (DDT) for jet substructure , 2016, 1603.00027.
[64] D. Kar,et al. Systematics of quark/gluon tagging , 2017, 1704.03878.
[65] G. Soyez,et al. Soft drop , 2014, 1402.2657.
[66] Scoap. Measurement of the charged-particle multiplicity inside jets from s=8 TeV pp collisions with the ATLAS detector , 2016 .
[67] J. A. Aguilar-Saavedra,et al. A generic anti-QCD jet tagger , 2017, 1709.01087.
[68] V. M. Ghete,et al. Particle-flow reconstruction and global event description with the CMS detector , 2017 .