The importance of calorimetry for highly-boosted jet substructure

Jet substructure techniques are playing an essential role in exploring the TeV scale at the Large Hadron Collider (LHC), since they facilitate the efficient reconstruction and identification of highly-boosted objects. Both for the LHC and for future colliders, there is a growing interest in using jet substructure methods based only on charged-particle information. The reason is that silicon-based tracking detectors offer excellent granularity and precise vertexing, which can improve the angular resolution on highly-collimated jets and mitigate the impact of pileup. In this paper, we assess how much jet substructure performance degrades by using track-only information, and we demonstrate physics contexts in which calorimetry is most beneficial. Specifically, we consider five different hadronic final states - W bosons, Z bosons, top quarks, light quarks, gluons - and test the pairwise discrimination power with a multi-variate combination of substructure observables. In the idealized case of perfect reconstruction, we quantify the loss in discrimination performance when using just charged particles compared to using all detected particles. We also consider the intermediate case of using charged particles plus photons, which provides valuable information about neutral pions. In the more realistic case of a segmented calorimeter, we assess the potential performance gains from improving calorimeter granularity and resolution, comparing a CMS-like detector to more ambitious future detector concepts. Broadly speaking, we find large performance gains from neutral-particle information and from improved calorimetry in cases where jet mass resolution drives the discrimination power, whereas the gains are more modest if an absolute mass scale calibration is not required.

[1]  J. Thaler,et al.  Identifying boosted objects with N-subjettiness , 2010, 1011.2268.

[2]  J. M. Butterworth,et al.  WW scattering at the LHC , 2002, hep-ph/0201098.

[3]  M. Schwartz,et al.  Jet Cleansing: Pileup Removal at High Luminosity , 2013, 1309.4777.

[4]  T. Tuuva,et al.  Search for massive resonances decaying into WW, WZ or ZZ bosons in proton-proton collisions at s=13$$ \sqrt{s}=13 $$ TeV , 2017 .

[5]  M. Schwartz,et al.  Quark and gluon tagging at the LHC. , 2011, Physical review letters.

[6]  S. M. Etesami,et al.  Search for Low Mass Vector Resonances Decaying to Quark-Antiquark Pairs in Proton-Proton Collisions at sqrt[s]=13  TeV. , 2017, Physical review letters.

[7]  M. Cacciari,et al.  FastJet user manual , 2011, 1111.6097.

[8]  Michael Spannowsky,et al.  Tagging highly boosted top quarks. , 2013, 1308.0540.

[9]  P. Skands,et al.  Tuning PYTHIA 8.1: the Monash 2013 tune , 2014, 1404.5630.

[10]  S. Forte,et al.  Parton distributions with LHC data , 2012, 1207.1303.

[11]  David W. Miller,et al.  Towards an understanding of the correlations in jet substructure , 2015, The European Physical Journal C.

[12]  M. Cacciari,et al.  Pileup subtraction for jet shapes. , 2012, Physical review letters.

[13]  D. Neill,et al.  Power counting to better jet observables , 2014, 1409.6298.

[14]  M. Schwartz,et al.  Quark and gluon jet substructure , 2012, Journal of High Energy Physics.

[15]  W. Waalewijn,et al.  Gaining (mutual) information about quark/gluon discrimination , 2014, Journal of High Energy Physics.

[16]  M. Seymour Searches for new particles using cone and cluster jet algorithms: a comparative study , 1994 .

[17]  D. Neill,et al.  Building a Better Boosted Top Tagger , 2014, 1411.0665.

[18]  W. Waalewijn Calculating the charge of a jet , 2012, 1209.3019.

[19]  Lian-tao Wang,et al.  Jet trimming , 2009, 0912.1342.

[20]  J. T. Childers,et al.  Light-quark and gluon jet discrimination in [Formula: see text] collisions at [Formula: see text] with the ATLAS detector. , 2014, The European physical journal. C, Particles and fields.

[21]  C. Collaboration,et al.  Particle-flow reconstruction and global event description with the CMS detector , 2017, 1706.04965.

[22]  A. Marchioro,et al.  Performance of the Aleph Detector At Lep , 1995 .

[23]  P. Baldi,et al.  Jet Substructure Classification in High-Energy Physics with Deep Neural Networks , 2016, 1603.09349.

[24]  D. Neill,et al.  Analytic boosted boson discrimination , 2015, 1507.03018.

[25]  S. D. Ellis,et al.  Jet substructure at the Tevatron and LHC: new results, new tools, new benchmarksReport prepared by the participants of the BOOST 2011 Workshop at Princeton University, 22–26 May 2011. L Asquith (lasquith@hep.anl.gov), S Rappoccio (rappocc@fnal.gov) and C K Vermilion (verm@uw.edu), editors. , 2011, 1201.0008.

[26]  M. Schwartz,et al.  Jet charge at the LHC. , 2012, Physical review letters.

[27]  A. Larkoski,et al.  How much information is in a jet? , 2017, Journal of High Energy Physics.

[28]  J. Thaler,et al.  Maximizing boosted top identification by minimizing N-subjettiness , 2011, 1108.2701.

[29]  J. A. Aguilar-Saavedra Stealth multiboson signals , 2017, 1705.07885.

[30]  S. D. Ellis,et al.  Boosted objects: a probe of beyond the standard model physics , 2010, 1012.5412.

[31]  P. Harris,et al.  Pileup per particle identification , 2014, 1407.6013.

[32]  Scoap Jet reconstruction and performance using particle flow with the ATLAS Detector , 2017 .

[33]  J. Friedman Greedy function approximation: A gradient boosting machine. , 2001 .

[34]  M. Selvaggi,et al.  Tracking down hyper-boosted top quarks , 2015, Journal of High Energy Physics.

[35]  M. Procura,et al.  Calculating Track Thrust with Track Functions , 2013, 1306.6630.

[36]  Luke de Oliveira,et al.  Jet-images — deep learning edition , 2015, Journal of High Energy Physics.

[37]  Patrick T. Komiske,et al.  Pileup Mitigation with Machine Learning (PUMML) , 2017, Journal of High Energy Physics.

[38]  M. Procura,et al.  Calculating track-based observables for the LHC. , 2013, Physical review letters.

[39]  João Paulo Teixeira,et al.  The CMS experiment at the CERN LHC , 2008 .

[40]  S. Bressler,et al.  Hadronic calorimeter shower size: Challenges and opportunities for jet substructure in the superboosted regime , 2015, 1506.02656.

[41]  J. Butterworth,et al.  Ju n 20 08 Jet substructure as a new Higgs search channel at the LHC , 2008 .

[42]  M. Spannowsky,et al.  Tracking New Physics at the LHC and beyond , 2015, 1505.01921.

[43]  M. Schwartz,et al.  Jet cleansing: Separating data from secondary collision induced radiation at high luminosity , 2014 .

[44]  T. Tuuva,et al.  Identification techniques for highly boosted W bosons that decay into hadrons , 2014 .

[45]  A. Goshaw The ATLAS Experiment at the CERN Large Hadron Collider , 2008 .

[46]  M. D. Pietra,et al.  Measurement of jet charge in dijet events from √s = 8 TeV p p collisions with the ATLAS detector , 2016 .

[47]  G. Salam,et al.  Towards an understanding of jet substructure , 2013, 1307.0007.

[48]  J. Butterworth,et al.  Reconstructing Sparticle Mass Spectra using Hadronic Decays , 2007, hep-ph/0702150.

[49]  Pierre Baldi,et al.  Decorrelated jet substructure tagging using adversarial neural networks , 2017, Physical Review D.

[50]  R. Frederix,et al.  The automated computation of tree-level and next-to-leading order differential cross sections, and their matching to parton shower simulations , 2014, 1405.0301.

[51]  S. D. Ellis,et al.  Recombination algorithms and jet substructure: Pruning as a tool for heavy particle searches , 2009, 0912.0033.

[52]  M. Cacciari,et al.  The anti-$k_t$ jet clustering algorithm , 2008, 0802.1189.

[53]  S. D. Ellis,et al.  Boosted objects and jet substructure at the LHC. Report of BOOST2012, held at IFIC Valencia, 23rd–27th of July 2012 , 2013, 1311.2708.

[54]  I. Moult,et al.  New angles on energy correlation functions , 2016, Journal of High Energy Physics.

[55]  Atlas Collaboration Light-quark and gluon jet discrimination in pp collisions at $\sqrt{s}$ = 7 TeV with the ATLAS detector , 2014, 1405.6583.

[56]  N. Tran,et al.  Initial performance studies of a general-purpose detector for multi-TeV physics at a 100 TeV pp collider , 2016, 1612.07291.

[57]  G. Salam,et al.  Energy correlation functions for jet substructure , 2013, 1305.0007.

[58]  M. Cacciari,et al.  SoftKiller, a particle-level pileup removal method , 2014, The European physical journal. C, Particles and fields.

[59]  M. Cacciari,et al.  Dispelling the N3 myth for the kt jet-finder , 2005, hep-ph/0512210.

[60]  Peter Skands,et al.  An introduction to PYTHIA 8.2 , 2014, Comput. Phys. Commun..

[61]  M. P. Casado,et al.  Measurement of the charged-particle multiplicity inside jets from $$\sqrt{s}=8$$s=8$${\mathrm{TeV}}$$TeV pp collisions with the ATLAS detector , 2016, The European physical journal. C, Particles and fields.

[62]  G. Salam,et al.  Dichroic subjettiness ratios to distinguish colour flows in boosted boson tagging , 2016, 1612.03917.

[63]  P. Harris,et al.  Thinking outside the ROCs: Designing Decorrelated Taggers (DDT) for jet substructure , 2016, 1603.00027.

[64]  D. Kar,et al.  Systematics of quark/gluon tagging , 2017, 1704.03878.

[65]  G. Soyez,et al.  Soft drop , 2014, 1402.2657.

[66]  Scoap Measurement of the charged-particle multiplicity inside jets from s=8 TeV pp collisions with the ATLAS detector , 2016 .

[67]  J. A. Aguilar-Saavedra,et al.  A generic anti-QCD jet tagger , 2017, 1709.01087.

[68]  V. M. Ghete,et al.  Particle-flow reconstruction and global event description with the CMS detector , 2017 .