A method of studying spectral optical characteristics of a homogeneous medium by means of terahertz time-domain spectroscopy

We have developed an algorithm for solving an inverse problem related to the reconstruction of spectral dependences of terahertz (THz) optical characteristics of a homogeneous medium in the form of a plane-parallel plate, which is based on processing signals obtained by a THz time-domain spectrometer. In contrast to existing methods, the developed algorithm allows studying the optical properties of dielectric samples that have a small thickness (down to 0.1 mm) and low index of refraction. Optical characteristics in the THz spectral range are determined by minimization of the error functional constructed based on experimental and theoretical complex transfer functions of the sample, wherein the theoretical transfer function is obtained by using a model of a Fabry-Perot quasi-resonator. The proposed method is experimentally verified by studying optical properties of test samples. The reconstructed THz optical characteristics are compared with the characteristics of the same test media obtained by means of the THz backward-wave oscillator spectroscopy, which allowed estimating the accuracy of the proposed method.

[1]  Vincent P. Wallace,et al.  A Comparison of Terahertz Pulsed Imaging with Transmission Microradiography for Depth Measurement of Enamel Demineralisation in vitro , 2006, Caries Research.

[2]  White,et al.  Subpicosecond, electromagnetic pulses from intense laser-plasma interaction. , 1993, Physical review letters.

[3]  Arseniy A. Gavdush,et al.  Novel Algorithm for Sample Material Parameter Determination using THz Time-Domain Spectrometer Signal Processing , 2014 .

[4]  Zach DeVito,et al.  Opt , 2017 .

[5]  Kirill I. Zaytsev,et al.  BWO based THz imaging system , 2014 .

[6]  D. Auston Picosecond optoelectronic switching and gating in silicon , 1975 .

[7]  Albert Redo-Sanchez,et al.  Assessment of terahertz spectroscopy to detect antibiotic residues in food and feed matrices. , 2011, The Analyst.

[8]  M. Koch,et al.  Highly accurate optical material parameter determination with THz time-domain spectroscopy. , 2007, Optics express.

[9]  Evolution of perturbations of a charged interface between immiscible inviscid fluids in the interelectrode gap , 2010 .

[10]  Kirill I. Zaytsev,et al.  Nondestructive testing of polymer composite materials using THz radiation , 2014 .

[11]  F. Harris On the use of windows for harmonic analysis with the discrete Fourier transform , 1978, Proceedings of the IEEE.

[12]  A. A. Volkov,et al.  Submillimeter BWO spectroscopy of solids , 1987 .

[13]  Donald D. Arnone,et al.  Terahertz-pulsed imaging of cancers , 2003, SPIE BiOS.

[14]  Yun-Shik Lee,et al.  Principles of Terahertz Science and Technology , 2008 .

[15]  Kirill I. Zaytsev,et al.  Novel technique for medium permittivity profile reconstruction using THz pulsed spectroscopy , 2014 .

[16]  A. GLAGOLEWA-ARKADIEWA Short Electromagnetic Waves of Wave-length up to 82 Microns , 1924, Nature.

[17]  Antao Chen,et al.  Terahertz reflectometry of burn wounds in a rat model , 2011, Biomedical optics express.

[18]  Valery V. Tuchin,et al.  Terahertz time-domain spectroscopy of biological tissues , 2008 .

[19]  Kirill I. Zaytsev,et al.  Sensing of phase transition in medium with terahertz pulsed spectroscopy , 2014 .

[20]  Richard Baraniuk,et al.  Material parameter estimation with terahertz time-domain spectroscopy. , 2001, Journal of the Optical Society of America. A, Optics, image science, and vision.

[21]  Cecil S. Joseph,et al.  Dual-frequency continuous-wave terahertz transmission imaging of nonmelanoma skin cancers , 2010, OPTO.

[22]  D. Grischkowsky,et al.  Far-infrared time-domain spectroscopy with terahertz beams of dielectrics and semiconductors , 1990 .

[23]  Arseniy A. Gavdush,et al.  Accuracy of sample material parameters reconstruction using terahertz pulsed spectroscopy , 2014 .

[24]  D. Mittleman,et al.  Terahertz spectroscopy of water in inverse micelles , 1997 .

[25]  J. Coutaz,et al.  Highly precise determination of optical constants and sample thickness in terahertz time-domain spectroscopy. , 1999, Applied optics.

[26]  Xiang Zhang,et al.  Fire damage on carbon fiber materials characterized by THz waves , 2006, SPIE Defense + Commercial Sensing.

[27]  E. Pickwell‐MacPherson,et al.  Terahertz pulsed spectroscopy of freshly excised human breast cancer. , 2009, Optics express.

[28]  M. Dressel,et al.  Terahertz BWO-Spectrosopy , 2005 .

[29]  Xiang Zhang,et al.  Terahertz beam generation by femtosecond optical pulses in electro‐optic materials , 1992 .

[30]  H. Richter,et al.  NbN hot electron bolometric mixers for terahertz receivers , 2001 .

[31]  Vincent P Wallace,et al.  Terahertz pulsed imaging of human breast tumors. , 2006, Radiology.

[32]  M. S. Shur,et al.  Effect of plasma resonances on dynamic characteristics of double graphene-layer optical modulator , 2012, 1208.4193.

[33]  S. Yurchenko,et al.  Structure of the nanobubble clusters of dissolved air in liquid media , 2011, Journal of Biological Physics.

[34]  A. A. Frolov,et al.  Generation of low-frequency radiation by dense hot plasma under pondermotive action of a short laser pulse , 2012 .

[35]  Kirill I. Zaytsev,et al.  Medical diagnostics using terahertz pulsed spectroscopy , 2014 .

[36]  J. Caumes,et al.  A Continuous Millimeter-Wave Imaging Scanner for Art Conservation Science , 2011 .

[37]  M. Finkel,et al.  The concept of the receiving complex for the “Millimetron” space radio telescope , 2007 .

[38]  A. Volkov,et al.  Coherent source submillimeter wave spectroscopy , 1998 .

[39]  P. Kouminov,et al.  Sensitivity and gigahertz counting performance of NbN superconducting single-photon detectors , 2004 .

[40]  Patrick Mounaix,et al.  Non-invasive investigation of art paintings by terahertz imaging , 2010 .

[41]  Christopher D. Stoik,et al.  Nondestructive evaluation of aircraft composites using transmissive terahertz time domain spectroscopy. , 2008, Optics express.