Enhancing strength-ductility of the aluminum bronze alloy by generating high-density ultrafine annealing twins

[1]  A. Shan,et al.  Ultra-strong nickel aluminum bronze alloys with ultrafine microstructures by continuous heavy hot rolling , 2019 .

[2]  Liqiang Wang,et al.  The grain refinement mechanisms of various phases in shot-peened Nickel-Aluminum bronze (NAB) alloy , 2018, Materials Characterization.

[3]  Liqiang Wang,et al.  Effects of microstructure on the stress corrosion cracking behavior of nickel-aluminum bronze alloy in 3.5% NaCl solution , 2018, Materials Science and Engineering: A.

[4]  Dingshun Yan,et al.  Dynamically reinforced heterogeneous grain structure prolongs ductility in a medium-entropy alloy with gigapascal yield strength , 2018, Proceedings of the National Academy of Sciences.

[5]  E. Lavernia,et al.  Enhanced thermal stability and ductility in a nanostructured Ni-based alloy , 2017 .

[6]  H. Peng,et al.  Thermal stability of nanocrystalline materials: thermodynamics and kinetics , 2017 .

[7]  Shu-nong Jiang,et al.  Effect of annealing on microstructure and tensile properties of cold-rolled Cu-2.7Be sheets , 2017 .

[8]  Liqiang Wang,et al.  Strengthening mechanism of friction stir processed and post heat treated NiAl bronze alloy: Effect of rotation rates , 2017 .

[9]  F. Yuan,et al.  Strain hardening in Fe-16Mn-10Al-0.86C-5Ni high specific strength steel , 2016 .

[10]  F. Yuan,et al.  Heterogeneous lamella structure unites ultrafine-grain strength with coarse-grain ductility , 2015, Proceedings of the National Academy of Sciences.

[11]  Liqiang Wang,et al.  Investigation of microstructure and mechanical properties of hot worked NiAl bronze alloy with different deformation degree , 2015 .

[12]  Xiaolei Wu,et al.  Synergetic Strengthening by Gradient Structure , 2014, Heterostructured Materials.

[13]  A. Shan,et al.  Effects of prior deformation and annealing process on microstructure and annealing twin density in a nickel based alloy , 2014 .

[14]  A. Manonukul,et al.  Effect of hot working on microstructure evolution of as-cast Nickel Aluminum Bronze alloy , 2014 .

[15]  A. Rollett,et al.  Annealing twin development during recrystallization and grain growth in pure nickel , 2014 .

[16]  T. Dorin,et al.  The influence of precipitation on plastic deformation of Al-Cu-Li alloys , 2013 .

[17]  D. T. McDonald,et al.  Significantly enhanced tensile strength and ductility in nickel aluminium bronze by equal channel angular pressing and subsequent heat treatment , 2013, Journal of Materials Science.

[18]  Xie Guoliang,et al.  The precipitation behavior and strengthening of a Cu–2.0 wt% Be alloy , 2012 .

[19]  R. Logé,et al.  Evolution of microstructure and twin density during thermomechanical processing in a γ-γ’ nickel-based superalloy , 2012 .

[20]  T. Mcnelley,et al.  Strengthening Mechanisms in NiAl Bronze: Hot Deformation by Rolling and Friction-Stir Processing , 2012, Metallurgical and Materials Transactions A.

[21]  L. Wang,et al.  Twin growth and its interaction with precipitates , 2012 .

[22]  D. Ponge,et al.  Design of a novel Mn-based 1 GPa duplex stainless TRIP steel with 60% ductility by a reduction of austenite stability , 2011 .

[23]  T. Mcnelley,et al.  The Effect of Concurrent Straining on Phase Transformations in NiAl Bronze During the Friction Stir Processing Thermomechanical Cycle , 2011 .

[24]  M. Imam,et al.  Grain growth and twin formation in boron-doped nickel polycrystals , 2009 .

[25]  K. Lu,et al.  Strengthening Materials by Engineering Coherent Internal Boundaries at the Nanoscale , 2009, Science.

[26]  Xiaoxu Huang,et al.  Revealing the Maximum Strength in Nanotwinned Copper , 2009, Science.

[27]  P. Zhang,et al.  Twin boundaries: Strong or weak? , 2008 .

[28]  N. Richards,et al.  Effect of processing parameters on grain boundary modifications to alloy Inconel 718 , 2007 .

[29]  S. Suresh,et al.  Strength, strain-rate sensitivity and ductility of copper with nanoscale twins , 2006 .

[30]  X. Liao,et al.  Tailoring stacking fault energy for high ductility and high strength in ultrafine grained Cu and its alloy , 2006 .

[31]  Horst Hahn,et al.  The interaction mechanism of screw dislocations with coherent twin boundaries in different face-centred cubic metals , 2006 .

[32]  Lei Lu,et al.  Ultrahigh Strength and High Electrical Conductivity in Copper , 2004, Science.

[33]  M. Imam,et al.  Effect of annealing twins on Hall–Petch relation in polycrystalline materials , 2004 .

[34]  M. Nastasi,et al.  Enhanced hardening in Cu/330 stainless steel multilayers by nanoscale twinning , 2004 .

[35]  Byoung-Ki Lee,et al.  Second-phase assisted formation of {111} twins in barium titanate , 2001 .

[36]  R. Valiev,et al.  Bulk nanostructured materials from severe plastic deformation , 2000 .

[37]  P. Lin,et al.  Improving the weldability and service performance of nickel-and iron-based superalloys by grain boundary engineering , 1998 .

[38]  S. Mahajan,et al.  Formation of annealing twins in f.c.c. crystals , 1997 .

[39]  H. Schneider-Muntau,et al.  Ultra-high strength, high conductivity Cu-Ag alloy wires , 1997 .

[40]  C. B. Thomson,et al.  Aspects of twinning and grain growth in high purity and commercially pure nickel , 1995 .

[41]  Ruslan Z. Valiev,et al.  Deformation behaviour of ultra-fine-grained copper , 1994 .

[42]  A. Rollett,et al.  Large-strain Bauschinger effects in fcc metals and alloys , 1990 .

[43]  M. Imam,et al.  Study of annealing twins in fcc metals and alloys , 1990 .

[44]  G. Lorimer,et al.  Microstructural development in complex nickel-aluminum bronzes , 1983 .

[45]  G. Lorimer,et al.  The morphology, crystallography, and chemistry of phases in as-cast nickel-aluminum bronze , 1982 .

[46]  G. Rose,et al.  Microstructural characterization of cast nickel aluminium bronze , 1978 .

[47]  L. Murr,et al.  A model for the formation of annealing twins in F.C.C. metals and alloys , 1978 .

[48]  H. Gleiter,et al.  The Formation of Annealing Twins , 1969 .

[49]  S. Kajiwara,et al.  The Orientation Relationships and Crystal Habits in the Martensite Transformation of a Cu-Al Alloy , 1964 .

[50]  S. Kajiwara,et al.  Electron Microscope Study of the Crystal Structure of the Martensite in a Copper-Aluminium Alloy , 1963 .

[51]  J. C. Fisher,et al.  Formation of Annealing Twins During Grain Growth , 1950 .

[52]  Xiaolei Wu,et al.  Deformation twinning in nanocrystalline materials , 2012 .

[53]  P. R. Rios,et al.  Grain growth and twinning in nickel , 2008 .

[54]  K. Vecchio,et al.  The influence of stacking fault energy on the mechanical behavior of Cu and Cu-Al alloys: Deformation twinning, work hardening, and dynamic recovery , 2001 .

[55]  G. Lorimer,et al.  Characterization of phases in a nickel-aluminium bronze , 1980 .