Higher-Order Conditional Random Fields-Based 3D Semantic Labeling of Airborne Laser-Scanning Point Clouds

[1]  Bisheng Yang,et al.  Hierarchical extraction of urban objects from mobile laser scanning data , 2015 .

[2]  Vibhav Vineet,et al.  Filter-Based Mean-Field Inference for Random Fields with Higher-Order Terms and Product Label-Spaces , 2012, International Journal of Computer Vision.

[3]  Robert C. Bolles,et al.  Random sample consensus: a paradigm for model fitting with applications to image analysis and automated cartography , 1981, CACM.

[4]  Ruisheng Wang,et al.  Extraction of residential building instances in suburban areas from mobile LiDAR data , 2018, ISPRS Journal of Photogrammetry and Remote Sensing.

[5]  Yizong Cheng,et al.  Mean Shift, Mode Seeking, and Clustering , 1995, IEEE Trans. Pattern Anal. Mach. Intell..

[6]  Xiang Yang,et al.  A Single Point-Based Multilevel Features Fusion and Pyramid Neighborhood Optimization Method for ALS Point Cloud Classification , 2019, Applied Sciences.

[7]  Liang Zhang,et al.  A Deep Neural Network With Spatial Pooling (DNNSP) for 3-D Point Cloud Classification , 2018, IEEE Transactions on Geoscience and Remote Sensing.

[8]  P. Zingaretti,et al.  Performance evaluation of automated approaches to building detection in multi-source aerial data , 2010 .

[9]  Zhen Wang,et al.  A Multiscale and Hierarchical Feature Extraction Method for Terrestrial Laser Scanning Point Cloud Classification , 2015, IEEE Transactions on Geoscience and Remote Sensing.

[10]  Fan Zhang,et al.  Classification of airborne laser scanning data using JointBoost , 2015 .

[11]  Pushmeet Kohli,et al.  Robust Higher Order Potentials for Enforcing Label Consistency , 2008, 2008 IEEE Conference on Computer Vision and Pattern Recognition.

[12]  Wuming Zhang,et al.  An Easy-to-Use Airborne LiDAR Data Filtering Method Based on Cloth Simulation , 2016, Remote. Sens..

[13]  Jan-Michael Frahm,et al.  USAC: A Universal Framework for Random Sample Consensus , 2013, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[14]  Changming Sun,et al.  Refinement of LiDAR point clouds using a super voxel based approach , 2018, ISPRS Journal of Photogrammetry and Remote Sensing.

[15]  Zhen Li,et al.  Content-Sensitive Multilevel Point Cluster Construction for ALS Point Cloud Classification , 2019, Remote. Sens..

[16]  Pushmeet Kohli,et al.  P³ & Beyond: Move Making Algorithms for Solving Higher Order Functions , 2009, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[17]  Bo Guo,et al.  Discriminative-Dictionary-Learning-Based Multilevel Point-Cluster Features for ALS Point-Cloud Classification , 2016, IEEE Transactions on Geoscience and Remote Sensing.

[18]  Suhong Liu,et al.  PSASL: Pixel-Level and Superpixel-Level Aware Subspace Learning for Hyperspectral Image Classification , 2019, IEEE Transactions on Geoscience and Remote Sensing.

[19]  Zhen Wang,et al.  A Multilevel Point-Cluster-Based Discriminative Feature for ALS Point Cloud Classification , 2016, IEEE Transactions on Geoscience and Remote Sensing.

[20]  Yusheng Xu,et al.  Unsupervised Segmentation of Point Clouds From Buildings Using Hierarchical Clustering Based on Gestalt Principles , 2018, IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing.

[21]  Dong Chen,et al.  A supervoxel-based vegetation classification via decomposition and modelling of full-waveform airborne laser scanning data , 2018 .

[22]  Liqiang Zhang,et al.  Joint Margin, Cograph, and Label Constraints for Semisupervised Scene Parsing From Point Clouds , 2018, IEEE Transactions on Geoscience and Remote Sensing.

[23]  Bisheng Yang,et al.  A shape-based segmentation method for mobile laser scanning point clouds , 2013 .

[24]  Yong Li,et al.  MVF-CNN: Fusion of Multilevel Features for Large-Scale Point Cloud Classification , 2019, IEEE Access.

[25]  Dorin Comaniciu,et al.  Mean Shift: A Robust Approach Toward Feature Space Analysis , 2002, IEEE Trans. Pattern Anal. Mach. Intell..

[26]  Ruofei Zhong,et al.  Joint Discriminative Dictionary and Classifier Learning for ALS Point Cloud Classification , 2018, IEEE Transactions on Geoscience and Remote Sensing.

[27]  Mozhdeh Shahbazi,et al.  Evolutionary Optimization for Robust Epipolar-Geometry Estimation and Outlier Detection , 2017, Algorithms.

[28]  Dieter Fox,et al.  Object Recognition in 3D Point Clouds Using Web Data and Domain Adaptation , 2010, Int. J. Robotics Res..

[29]  Bisheng Yang,et al.  Computing multiple aggregation levels and contextual features for road facilities recognition using mobile laser scanning data , 2017 .

[30]  David Hernández-López,et al.  Automated Urban Analysis Based on LiDAR-Derived Building Models , 2013, IEEE Transactions on Geoscience and Remote Sensing.

[31]  Stefan Hinz,et al.  Semantic point cloud interpretation based on optimal neighborhoods, relevant features and efficient classifiers , 2015 .

[32]  Xiangguo Lin,et al.  Classification of ALS Point Cloud with Improved Point Cloud Segmentation and Random Forests , 2017, Remote. Sens..