Application of full range swept source optical coherence tomography for imaging of the anterior eye segment in patients with type I Boston Keratoprosthesis

We present a high-speed complex conjugate resolved 1 μm swept source optical coherence tomography [SS-OCT] system using coherence revival of the light source for clinical imaging of the anterior segment of the eye. High-speed of 100,000 A-scans/sec and 1 μm imaging window of OCT permits dense 3D imaging of the anterior segment, minimizing the influence of motion artifacts and deep penetration of images for topographic analysis. The swept laser performance with internal clocking was adapted to achieve extended imaging depth requirements. The feasibility of our instrument for visualization of the anterior segment of patients with the Boston Keratoprosthesis (KPro) was discussed. The relations between of the KPro and the surrounding tissue were also demonstrated.

[1]  M. Doane,et al.  Some Factors Influencing Outcome After Keratoprosthesis Surgery , 1994, Cornea.

[2]  M. Doane,et al.  Fabrication of a Keratoprosthesis , 1996, Cornea.

[3]  S. Yun,et al.  High-speed optical frequency-domain imaging. , 2003, Optics express.

[4]  M. Wojtkowski,et al.  Corneal topography with high-speed swept source OCT in clinical examination , 2011, Biomedical optics express.

[5]  Joseph A. Izatt,et al.  Complex conjugate resolved heterodyne swept source optical coherence tomography using coherence revival , 2012, Biomedical optics express.

[6]  Changhuei Yang,et al.  Sensitivity advantage of swept source and Fourier domain optical coherence tomography. , 2003, Optics express.

[7]  S. Yun,et al.  115 kHz tuning repetition rate ultrahigh-speed wavelength-swept semiconductor laser. , 2005, Optics letters.

[8]  A. Fercher,et al.  In vivo human retinal imaging by Fourier domain optical coherence tomography. , 2002, Journal of biomedical optics.

[9]  G. Ha Usler,et al.  "Coherence radar" and "spectral radar"-new tools for dermatological diagnosis. , 1998, Journal of biomedical optics.

[10]  M. Wojtkowski,et al.  Improved spectral optical coherence tomography using optical frequency comb. , 2008, Optics express.

[11]  R. Huber,et al.  Megahertz OCT for ultrawide-field retinal imaging with a 1050 nm Fourier domain mode-locked laser. , 2011, Optics express.

[12]  M. Wojtkowski,et al.  Ultra high-speed swept source OCT imaging of the anterior segment of human eye at 200 kHz with adjustable imaging range. , 2009, Optics express.

[13]  J. Fujimoto,et al.  Amplified, frequency swept lasers for frequency domain reflectometry and OCT imaging: design and scaling principles. , 2005, Optics express.

[14]  R. Huber,et al.  Subharmonic Fourier domain mode locking. , 2009, Optics letters.

[15]  R. Birngruber,et al.  Slit-lamp-adapted optical coherence tomography of the anterior segment , 2000, Graefe's Archive for Clinical and Experimental Ophthalmology.

[16]  J Moreno-Montañés,et al.  Optical coherence tomography evaluation of the corneal cap and stromal bed features after laser in situ keratomileusis for high myopia and astigmatism. , 2000, Ophthalmology.

[17]  S H Yun,et al.  Motion artifacts in optical coherence tomography with frequency-domain ranging. , 2004, Optics express.

[18]  Maciej Wojtkowski,et al.  High-speed optical coherence tomography: basics and applications. , 2010, Applied optics.

[19]  J. Fujimoto,et al.  Buffered Fourier domain mode locking: Unidirectional swept laser sources for optical coherence tomography imaging at 370,000 lines/s. , 2006, Optics letters.

[20]  J. Fujimoto,et al.  Phase-sensitive optical coherence tomography at up to 370,000 lines per second using buffered Fourier domain mode-locked lasers. , 2007, Optics letters.

[21]  T. Yatagai,et al.  Three-dimensional and high-speed swept-source optical coherence tomography for in vivo investigation of human anterior eye segments. , 2005, Optics express.

[22]  J. Fujimoto,et al.  Fourier Domain Mode Locking (FDML): A new laser operating regime and applications for optical coherence tomography. , 2006, Optics express.

[23]  Marinko V Sarunic,et al.  Imaging the ocular anterior segment with real-time, full-range Fourier-domain optical coherence tomography. , 2008, Archives of ophthalmology.

[24]  A. Fercher,et al.  Measurement of intraocular distances by backscattering spectral interferometry , 1995 .

[25]  Wolfgang Wieser,et al.  Multi-MHz FDML OCT: snapshot retinal imaging at 6.7 million axial-scans per second , 2012, Photonics West - Biomedical Optics.

[26]  S. Kiss,et al.  Boston type I keratoprosthesis-donor cornea interface evaluated by high-definition spectral-domain anterior segment optical coherence tomography , 2012, Clinical ophthalmology.

[27]  Wolfgang Wieser,et al.  Multi-megahertz OCT: High quality 3D imaging at 20 million A-scans and 4.5 GVoxels per second. , 2010, Optics express.

[28]  J. Izatt,et al.  Swept source optical coherence tomography using an all-fiber 1300-nm ring laser source. , 2005, Journal of biomedical optics.

[29]  D. Ritterband,et al.  Evaluation of the Stability of Boston Type I Keratoprosthesis–Donor Cornea Interface Using Anterior Segment Optical Coherence Tomography , 2010, Cornea.