A comparative design study of continuous-time incremental sigma-delta ADC architectures
暂无分享,去创建一个
[1] Kofi A. A. Makinwa,et al. A 6.3 µW 20 bit Incremental Zoom-ADC with 6 ppm INL and 1 µV Offset , 2013, IEEE Journal of Solid-State Circuits.
[2] Sha Tao,et al. A Power-Efficient Continuous-Time Incremental Sigma-Delta ADC for Neural Recording Systems , 2015, IEEE Transactions on Circuits and Systems I: Regular Papers.
[3] Ana Rusu,et al. On Continuous-Time Incremental $\Sigma\Delta$ ADCs With Extended Range , 2013, IEEE Transactions on Instrumentation and Measurement.
[4] János Márkus,et al. Higher-order incremental delta-sigma analog-to-digital converters , 2005 .
[5] Franco Maloberti,et al. A 105-dB SNDR, 10 kSps multi-level second-order incremental converter with smart-DEM consuming 280 µW and 3.3-V supply , 2013, 2013 Proceedings of the ESSCIRC (ESSCIRC).
[6] Gert Cauwenberghs,et al. Micropower integrated bioamplifier and auto-ranging ADC for wireless and implantable medical instrumentation , 2010, 2010 Proceedings of ESSCIRC.
[7] Po-Chiun Huang,et al. A 1-V–0.6-V 9-b 1.5-MS/s Reference-Free Charge-Sharing SAR ADC for Wireless-Powered Implantable Telemetry , 2014, IEEE Transactions on Circuits and Systems II: Express Briefs.
[8] Chao Chen,et al. A 1V 14b self-timed zero-crossing-based incremental ΔΣ ADC , 2013, 2013 IEEE International Solid-State Circuits Conference Digest of Technical Papers.
[9] Franco Maloberti,et al. High-resolution multi-bit second-order incremental converter with 1.5-μV residual offset and 94-dB SFDR , 2012 .
[10] Pierre-André Farine,et al. Performance Analysis of a Hybrid Incremental and Cyclic A/D Conversion Principle , 2009, IEEE Trans. Circuits Syst. I Regul. Pap..
[11] G.C. Temes,et al. A low-power 22-bit incremental ADC , 2006, IEEE Journal of Solid-State Circuits.
[12] Mohsen Mollazadeh,et al. Micropower CMOS Integrated Low-Noise Amplification, Filtering, and Digitization of Multimodal Neuropotentials , 2009, IEEE Transactions on Biomedical Circuits and Systems.
[13] Gabor C. Temes,et al. 82 dB SNDR 20-channel incremental ADC with optimal decimation filter and digital correction , 2010, IEEE Custom Integrated Circuits Conference 2010.
[14] Johan H. Huijsing,et al. Micropower CMOS temperature sensor with digital output , 1996, IEEE J. Solid State Circuits.
[15] Sha Tao,et al. DAC waveform effects in CT incremental ΣΔ ADCs for biosensor applications , 2013, 2013 IEEE 11th International New Circuits and Systems Conference (NEWCAS).
[16] Julian Garcia. Digitally Enhanced Continuous-Time Sigma-Delta Analogue-to-Digital Converters , 2012 .
[17] Gabor C. Temes,et al. Understanding Delta-Sigma Data Converters , 2004 .
[18] Maurits Ortmanns,et al. A case study on a 2-1-1 cascaded continuous-time sigma-delta Modulator , 2005, IEEE Transactions on Circuits and Systems I: Regular Papers.
[19] Gabor C. Temes,et al. A Micro-Power Two-Step Incremental Analog-to-Digital Converter , 2015, IEEE Journal of Solid-State Circuits.
[20] Ana Rusu,et al. A Low-Power CT Incremental 3rd Order ΣΔ ADC for Biosensor Applications , 2013, IEEE Trans. Circuits Syst. I Regul. Pap..
[21] Pieter Rombouts,et al. A 13.5-b 1.2-V micropower extended counting A/D converter , 2001, IEEE J. Solid State Circuits.
[22] Maurits Ortmanns,et al. Continuous time sigma-delta A/D conversion : fundamentals, performance limits and robust implementations , 2006 .
[23] Gabor C. Temes,et al. Theory and applications of incremental ΔΣ converters , 2004, IEEE Trans. Circuits Syst. I Regul. Pap..
[24] James D. Plummer,et al. A High-Resolution Low-Power Incremental $\Sigma\Delta$ ADC With Extended Range for Biosensor Arrays , 2010, IEEE Journal of Solid-State Circuits.