A comparative design study of continuous-time incremental sigma-delta ADC architectures

This paper presents a comparative design study of continuous-time CT incremental sigma-delta IΣΔ ADCs, which can expand another dimension of the IΣΔ ADC world that is dominated by discrete-time implementations. Several CT IΣΔ ADC architectures are introduced and analyzed aiming to reduce the modulator's sampling frequency and consequently the power dissipation. Based on the analytical results, three CT IΣΔ ADCs are selected to be examined, implemented, and tested. The three ADC prototypes, fabricated in a standard 0.18-m CMOS technology, demonstrate competitive figure-of-merits in terms of power efficiency compared to the state-of-the-art counterparts. Copyright © 2016 John Wiley & Sons, Ltd.

[1]  Kofi A. A. Makinwa,et al.  A 6.3 µW 20 bit Incremental Zoom-ADC with 6 ppm INL and 1 µV Offset , 2013, IEEE Journal of Solid-State Circuits.

[2]  Sha Tao,et al.  A Power-Efficient Continuous-Time Incremental Sigma-Delta ADC for Neural Recording Systems , 2015, IEEE Transactions on Circuits and Systems I: Regular Papers.

[3]  Ana Rusu,et al.  On Continuous-Time Incremental $\Sigma\Delta$ ADCs With Extended Range , 2013, IEEE Transactions on Instrumentation and Measurement.

[4]  János Márkus,et al.  Higher-order incremental delta-sigma analog-to-digital converters , 2005 .

[5]  Franco Maloberti,et al.  A 105-dB SNDR, 10 kSps multi-level second-order incremental converter with smart-DEM consuming 280 µW and 3.3-V supply , 2013, 2013 Proceedings of the ESSCIRC (ESSCIRC).

[6]  Gert Cauwenberghs,et al.  Micropower integrated bioamplifier and auto-ranging ADC for wireless and implantable medical instrumentation , 2010, 2010 Proceedings of ESSCIRC.

[7]  Po-Chiun Huang,et al.  A 1-V–0.6-V 9-b 1.5-MS/s Reference-Free Charge-Sharing SAR ADC for Wireless-Powered Implantable Telemetry , 2014, IEEE Transactions on Circuits and Systems II: Express Briefs.

[8]  Chao Chen,et al.  A 1V 14b self-timed zero-crossing-based incremental ΔΣ ADC , 2013, 2013 IEEE International Solid-State Circuits Conference Digest of Technical Papers.

[9]  Franco Maloberti,et al.  High-resolution multi-bit second-order incremental converter with 1.5-μV residual offset and 94-dB SFDR , 2012 .

[10]  Pierre-André Farine,et al.  Performance Analysis of a Hybrid Incremental and Cyclic A/D Conversion Principle , 2009, IEEE Trans. Circuits Syst. I Regul. Pap..

[11]  G.C. Temes,et al.  A low-power 22-bit incremental ADC , 2006, IEEE Journal of Solid-State Circuits.

[12]  Mohsen Mollazadeh,et al.  Micropower CMOS Integrated Low-Noise Amplification, Filtering, and Digitization of Multimodal Neuropotentials , 2009, IEEE Transactions on Biomedical Circuits and Systems.

[13]  Gabor C. Temes,et al.  82 dB SNDR 20-channel incremental ADC with optimal decimation filter and digital correction , 2010, IEEE Custom Integrated Circuits Conference 2010.

[14]  Johan H. Huijsing,et al.  Micropower CMOS temperature sensor with digital output , 1996, IEEE J. Solid State Circuits.

[15]  Sha Tao,et al.  DAC waveform effects in CT incremental ΣΔ ADCs for biosensor applications , 2013, 2013 IEEE 11th International New Circuits and Systems Conference (NEWCAS).

[16]  Julian Garcia Digitally Enhanced Continuous-Time Sigma-Delta Analogue-to-Digital Converters , 2012 .

[17]  Gabor C. Temes,et al.  Understanding Delta-Sigma Data Converters , 2004 .

[18]  Maurits Ortmanns,et al.  A case study on a 2-1-1 cascaded continuous-time sigma-delta Modulator , 2005, IEEE Transactions on Circuits and Systems I: Regular Papers.

[19]  Gabor C. Temes,et al.  A Micro-Power Two-Step Incremental Analog-to-Digital Converter , 2015, IEEE Journal of Solid-State Circuits.

[20]  Ana Rusu,et al.  A Low-Power CT Incremental 3rd Order ΣΔ ADC for Biosensor Applications , 2013, IEEE Trans. Circuits Syst. I Regul. Pap..

[21]  Pieter Rombouts,et al.  A 13.5-b 1.2-V micropower extended counting A/D converter , 2001, IEEE J. Solid State Circuits.

[22]  Maurits Ortmanns,et al.  Continuous time sigma-delta A/D conversion : fundamentals, performance limits and robust implementations , 2006 .

[23]  Gabor C. Temes,et al.  Theory and applications of incremental ΔΣ converters , 2004, IEEE Trans. Circuits Syst. I Regul. Pap..

[24]  James D. Plummer,et al.  A High-Resolution Low-Power Incremental $\Sigma\Delta$ ADC With Extended Range for Biosensor Arrays , 2010, IEEE Journal of Solid-State Circuits.