Inspiration for optimization from social insect behaviour

Research in social insect behaviour has provided computer scientists with powerful methods for designing distributed control and optimization algorithms. These techniques are being applied successfully to a variety of scientific and engineering problems. In addition to achieving good performance on a wide spectrum of ‘static’ problems, such techniques tend to exhibit a high degree of flexibility and robustness in a dynamic environment.

[1]  Juan Julián Merelo Guervós,et al.  Proceedings of the 7th International Conference on Parallel Problem Solving from Nature , 1996 .

[2]  Luca Maria Gambardella,et al.  An Ant Colony System Hybridized with a New Local Search for the Sequential Ordering Problem , 2000, INFORMS J. Comput..

[3]  Corso Elvezia,et al.  Ant colonies for the traveling salesman problem , 1997 .

[4]  M Dorigo,et al.  Ant colonies for the quadratic assignment problem , 1999, J. Oper. Res. Soc..

[5]  M Dorigo,et al.  Ant colonies for the travelling salesman problem. , 1997, Bio Systems.

[6]  Dimitri P. Bertsekas,et al.  Data Networks , 1986 .

[7]  Antonella Carbonaro,et al.  An ANTS heuristic for the frequency assignment problem , 2000, Future Gener. Comput. Syst..

[8]  Martin Heusse,et al.  Adaptive Agent-Driven Routing and Load Balancing in Communication Networks , 1998, Adv. Complex Syst..

[9]  Pascale Kuntz,et al.  A Stochastic Heuristic for Visualising Graph Clusters in a Bi-Dimensional Space Prior to Partitioning , 1999, J. Heuristics.

[10]  C. Ronald Kube,et al.  Task Modelling in Collective Robotics , 1997, Auton. Robots.

[11]  Matthew Brand,et al.  From animals to animats: Proceedings of the First International Conference on Simulation of Adaptive Behavior: Jean-Arcady Meyer and Stewart W. Wilson, eds., (MIT Press/Bradford Books, Cambridge, MA, 1991); 551 pages, ISBN 0-262-63138-5 , 1995 .

[12]  Marco Dorigo,et al.  From Natural to Artificial Swarm Intelligence , 1999 .

[13]  Marco Dorigo,et al.  Swarm intelligence: from natural to artificial systems , 1999 .

[14]  G. Robinson Regulation of division of labor in insect societies. , 1992, Annual review of entomology.

[15]  Kan Chen Simple learning algorithm for the traveling salesman problem , 1996, adap-org/9608003.

[16]  Vittorio Maniezzo,et al.  The Ant System Applied to the Quadratic Assignment Problem , 1999, IEEE Trans. Knowl. Data Eng..

[17]  Kevin F. Kelly New rules for the new economy : 10 radical strategies for a connected world , 1998 .

[18]  Andrew B. Kahng,et al.  Cooperative Mobile Robotics: Antecedents and Directions , 1997, Auton. Robots.

[19]  Marco Dorigo,et al.  AntNet: Distributed Stigmergetic Control for Communications Networks , 1998, J. Artif. Intell. Res..

[20]  Hong Zhang,et al.  Collective Robotics: From Social Insects to Robots , 1993, Adapt. Behav..

[21]  Léon J. M. Rothkrantz,et al.  Ant-Based Load Balancing in Telecommunications Networks , 1996, Adapt. Behav..

[22]  Riccardo Poli,et al.  New ideas in optimization , 1999 .

[23]  M. Ward THERE'S AN ANT IN MY PHONE , 1998 .

[24]  Silvano Martello,et al.  Meta-Heuristics: Advances and Trends in Local Search Paradigms for Optimization , 2012 .

[25]  J. H. Sudd The Transport of Prey By Ants , 1965 .

[26]  Thomas Stützle,et al.  The MAX–MIN Ant System and Local Search for Combinatorial Optimization Problems: Towards Adaptive Tools for Global Optimization , 1997 .

[27]  Alain Hertz,et al.  Ants can colour graphs , 1997 .

[28]  J. Deneubourg,et al.  Collective patterns and decision-making , 1989 .

[29]  Alex Fukunaga,et al.  Cooperative mobile robotics: antecedents and directions , 1995 .

[30]  Marco Dorigo,et al.  Ant system: optimization by a colony of cooperating agents , 1996, IEEE Trans. Syst. Man Cybern. Part B.