Memetic algorithms and memetic computing optimization: A literature review

Abstract Memetic computing is a subject in computer science which considers complex structures such as the combination of simple agents and memes, whose evolutionary interactions lead to intelligent complexes capable of problem-solving. The founding cornerstone of this subject has been the concept of memetic algorithms, that is a class of optimization algorithms whose structure is characterized by an evolutionary framework and a list of local search components. This article presents a broad literature review on this subject focused on optimization problems. Several classes of optimization problems, such as discrete, continuous, constrained, multi-objective and characterized by uncertainties, are addressed by indicating the memetic “recipes” proposed in the literature. In addition, this article focuses on implementation aspects and especially the coordination of memes which is the most important and characterizing aspect of a memetic structure. Finally, some considerations about future trends in the subject are given.

[1]  Abdullah Al Mamun,et al.  Balancing exploration and exploitation with adaptive variation for evolutionary multi-objective optimization , 2009, Eur. J. Oper. Res..

[2]  Natalio Krasnogor,et al.  A study on the design issues of Memetic Algorithm , 2007, 2007 IEEE Congress on Evolutionary Computation.

[3]  William E. Hart,et al.  Memetic Evolutionary Algorithms , 2005 .

[4]  Hitoshi Iba,et al.  Enhancing differential evolution performance with local search for high dimensional function optimization , 2005, GECCO '05.

[5]  Wen-Jye Shyr ROBUST CONTROL DESIGN FOR AIRCRAFT CONTROLLERS VIA MEMETIC ALGORITHMS , 2009 .

[6]  Francisco Herrera,et al.  Real-Coded Memetic Algorithms with Crossover Hill-Climbing , 2004, Evolutionary Computation.

[7]  David H. Wolpert,et al.  No free lunch theorems for optimization , 1997, IEEE Trans. Evol. Comput..

[8]  Carlos García-Martínez,et al.  Memetic Algorithms for Continuous Optimisation Based on Local Search Chains , 2010, Evolutionary Computation.

[9]  Ferrante Neri,et al.  Memetic Compact Differential Evolution for Cartesian Robot Control , 2010, IEEE Computational Intelligence Magazine.

[10]  Bernd Freisleben,et al.  A Genetic Local Search Approach to the Quadratic Assignment Problem , 1997, ICGA.

[11]  W. Vent,et al.  Rechenberg, Ingo, Evolutionsstrategie — Optimierung technischer Systeme nach Prinzipien der biologischen Evolution. 170 S. mit 36 Abb. Frommann‐Holzboog‐Verlag. Stuttgart 1973. Broschiert , 1975 .

[12]  Peter Merz,et al.  A Comparison Of Memetic Recombination Operators For The Traveling Salesman Problem , 2002, GECCO.

[13]  Mehmet Fatih Tasgetiren,et al.  Differential evolution algorithm with ensemble of parameters and mutation strategies , 2011, Appl. Soft Comput..

[14]  Christian Prins,et al.  An effective memetic algorithm for the cumulative capacitated vehicle routing problem , 2010, Comput. Oper. Res..

[15]  Feng Qian,et al.  A hybrid genetic algorithm with the Baldwin effect , 2010, Inf. Sci..

[16]  Magdalene Marinaki,et al.  A hybrid genetic - Particle Swarm Optimization Algorithm for the vehicle routing problem , 2010, Expert Syst. Appl..

[17]  Patrick D. Surry,et al.  Inoculation to Initialise Evolutionary Search , 1996, Evolutionary Computing, AISB Workshop.

[18]  Marcin Detyniecki,et al.  Memetic algorithms for inexact graph matching , 2007, 2007 IEEE Congress on Evolutionary Computation.

[19]  Pablo Moscato,et al.  Evolutionary algorithms for scheduling a flowshop manufacturing cell with sequence dependent family setups , 2005, Comput. Ind. Eng..

[20]  Ponnuthurai N. Suganthan,et al.  Ensemble strategies with adaptive evolutionary programming , 2010, Inf. Sci..

[21]  Tapabrata Ray,et al.  Performance of infeasibility empowered memetic algorithm for CEC 2010 constrained optimization problems , 2010, IEEE Congress on Evolutionary Computation.

[22]  R. Brady Optimization strategies gleaned from biological evolution , 1985, Nature.

[23]  Larry J. Eshelman,et al.  The CHC Adaptive Search Algorithm: How to Have Safe Search When Engaging in Nontraditional Genetic Recombination , 1990, FOGA.

[24]  Shengxiang Yang,et al.  Evolutionary Computation in Dynamic and Uncertain Environments , 2007, Studies in Computational Intelligence.

[25]  Bernd Freisleben,et al.  Memetic Algorithms and the Fitness Landscape of the Graph Bi-Partitioning Problem , 1998, PPSN.

[26]  Janez Brest,et al.  Self-adaptive differential evolution algorithm using population size reduction and three strategies , 2011, Soft Comput..

[27]  Amit Agarwal,et al.  Hybrid ant colony algorithms for path planning in sparse graphs , 2008, Soft Comput..

[28]  Steffen Wolf,et al.  A Hybrid Method for Solving Large-Scale Supply Chain Problems , 2007, EvoCOP.

[29]  Raino A. E. Mäkinen,et al.  Hierarchical Evolutionary Algorithms and Noise Compensation via Adaptation , 2007, Evolutionary Computation in Dynamic and Uncertain Environments.

[30]  Marios K. Karakasis,et al.  ON THE USE OF SURROGATE EVALUATION MODELS IN MULTI-OBJECTIVE EVOLUTIONARY ALGORITHMS , 2004 .

[31]  Ville Tirronen,et al.  Scale factor inheritance mechanism in distributed differential evolution , 2009, Soft Comput..

[32]  Christian Prins,et al.  Two memetic algorithms for heterogeneous fleet vehicle routing problems , 2009, Eng. Appl. Artif. Intell..

[33]  Niko Kotilainen,et al.  A Memetic-Neural Approach to Discover Resources in P2P Networks , 2008, Recent Advances in Evolutionary Computation for Combinatorial Optimization.

[34]  Kay Chen Tan,et al.  Solving multiobjective vehicle routing problem with stochastic demand via evolutionary computation , 2007, Eur. J. Oper. Res..

[35]  In Schoenauer,et al.  Parallel Problem Solving from Nature , 1990, Lecture Notes in Computer Science.

[36]  Kay Chen Tan,et al.  A predictive gradient strategy for multiobjective evolutionary algorithms in a fast changing environment , 2010, Memetic Comput..

[37]  Yoel Tenne,et al.  A Versatile Surrogate-Assisted Memetic Algorithm for Optimization of Computationally Expensive Functions and its Engineering Applications , 2008 .

[38]  Natalio Krasnogor,et al.  Studies on the theory and design space of memetic algorithms , 2002 .

[39]  Graham Kendall,et al.  A Hyperheuristic Approach to Scheduling a Sales Summit , 2000, PATAT.

[40]  Joshua D. Knowles,et al.  M-PAES: a memetic algorithm for multiobjective optimization , 2000, Proceedings of the 2000 Congress on Evolutionary Computation. CEC00 (Cat. No.00TH8512).

[41]  Shigeru Nakayama,et al.  Robust optimization using multi-objective particle swarm optimization , 2009, Artificial Life and Robotics.

[42]  Peter J. Fleming,et al.  An Overview of Evolutionary Algorithms in Multiobjective Optimization , 1995, Evolutionary Computation.

[43]  Evripidis Bampis,et al.  A Dynasearch Neighborhood for the Bicriteria Traveling Salesman Problem , 2004, Metaheuristics for Multiobjective Optimisation.

[44]  Yan Zhou,et al.  A memetic co-evolutionary differential evolution algorithm for constrained optimization , 2007, 2007 IEEE Congress on Evolutionary Computation.

[45]  Kenneth Sörensen,et al.  A Practical Approach for Robust and Flexible Vehicle Routing Using Metaheuristics and Monte Carlo Sampling , 2009, J. Math. Model. Algorithms.

[46]  Terence C. Fogarty,et al.  A Genetic Algorithm with Variable Range of Local Search for Tracking Changing Environments , 1996, PPSN.

[47]  W. Hart Adaptive global optimization with local search , 1994 .

[48]  Bu-Sung Lee,et al.  Inverse multi-objective robust evolutionary design , 2006, Genetic Programming and Evolvable Machines.

[49]  Jing J. Liang,et al.  Differential Evolution With Neighborhood Mutation for Multimodal Optimization , 2012, IEEE Transactions on Evolutionary Computation.

[50]  Fred W. Glover,et al.  Tabu Search , 1997, Handbook of Heuristics.

[51]  Janez Brest,et al.  High-dimensional real-parameter optimization using Self-Adaptive Differential Evolution algorithm with population size reduction , 2008, 2008 IEEE Congress on Evolutionary Computation (IEEE World Congress on Computational Intelligence).

[52]  Christian Prins,et al.  A memetic algorithm with dynamic population management for an integrated production-distribution problem , 2009, Eur. J. Oper. Res..

[53]  Ruhul A. Sarker,et al.  Evolutionary scheduling with rescheduling option for sudden machine breakdowns , 2010, IEEE Congress on Evolutionary Computation.

[54]  Matthieu Basseur Design of cooperative algorithms for multi-objective optimization: application to the flow-shop scheduling problem , 2006, 4OR.

[55]  Abder Koukam,et al.  The memetic self-organizing map approach to the vehicle routing problem , 2008, Soft Comput..

[56]  Christian Prins,et al.  A simple and effective evolutionary algorithm for the vehicle routing problem , 2004, Comput. Oper. Res..

[57]  Chun Chen,et al.  Multiple trajectory search for Large Scale Global Optimization , 2008, 2008 IEEE Congress on Evolutionary Computation (IEEE World Congress on Computational Intelligence).

[58]  Andrzej Jaszkiewicz,et al.  Genetic local search for multi-objective combinatorial optimization , 2022 .

[59]  P. Cowling,et al.  CHOICE FUNCTION AND RANDOM HYPERHEURISTICS , 2002 .

[60]  Hisao Ishibuchi,et al.  Balance between genetic search and local search in memetic algorithms for multiobjective permutation flowshop scheduling , 2003, IEEE Trans. Evol. Comput..

[61]  Yew-Soon Ong,et al.  Curse and Blessing of Uncertainty in Evolutionary Algorithm Using Approximation , 2006, 2006 IEEE International Conference on Evolutionary Computation.

[62]  Kai-Yew Lum,et al.  Max-min surrogate-assisted evolutionary algorithm for robust design , 2006, IEEE Transactions on Evolutionary Computation.

[63]  L. Darrell Whitley,et al.  Genetic Operators, the Fitness Landscape and the Traveling Salesman Problem , 1992, PPSN.

[64]  John A. Nelder,et al.  A Simplex Method for Function Minimization , 1965, Comput. J..

[65]  Jose A. Egea,et al.  Dynamic Optimization of Nonlinear Processes with an Enhanced Scatter Search Method , 2009 .

[66]  Mourad Sefrioui,et al.  A Hierarchical Genetic Algorithm Using Multiple Models for Optimization , 2000, PPSN.

[67]  Yu Wang,et al.  Self-adaptive learning based particle swarm optimization , 2011, Inf. Sci..

[68]  James Smith,et al.  A tutorial for competent memetic algorithms: model, taxonomy, and design issues , 2005, IEEE Transactions on Evolutionary Computation.

[69]  Janez Brest,et al.  Self-Adapting Control Parameters in Differential Evolution: A Comparative Study on Numerical Benchmark Problems , 2006, IEEE Transactions on Evolutionary Computation.

[70]  Bu-Sung Lee,et al.  Memetic algorithm using multi-surrogates for computationally expensive optimization problems , 2007, Soft Comput..

[71]  Pablo Moscato,et al.  Handbook of Memetic Algorithms , 2011, Studies in Computational Intelligence.

[72]  Hitoshi Iba,et al.  Accelerating Differential Evolution Using an Adaptive Local Search , 2008, IEEE Transactions on Evolutionary Computation.

[73]  Xiang Li,et al.  A Hybrid Adaptive Evolutionary Algorithm for Constrained Optimization , 2007, Third International Conference on Intelligent Information Hiding and Multimedia Signal Processing (IIH-MSP 2007).

[74]  P. Moscato A Competitive-cooperative Approach to Complex Combinatorial Search , 1991 .

[75]  Wenbin Song,et al.  Multiobjective Memetic Algorithm and Its Application in Robust Airfoil Shape Optimization , 2009 .

[76]  A. J. Booker,et al.  A rigorous framework for optimization of expensive functions by surrogates , 1998 .

[77]  B. Freisleben,et al.  Genetic local search for the TSP: new results , 1997, Proceedings of 1997 IEEE International Conference on Evolutionary Computation (ICEC '97).

[78]  Edmund K. Burke,et al.  A Memetic Algorithm to Schedule Planned Grid Maintenance , 1999 .

[79]  Ruhul A. Sarker,et al.  An Agent-based Memetic Algorithm (AMA) for nonlinear optimization with equality constraints , 2009, 2009 IEEE Congress on Evolutionary Computation.

[80]  Tapabrata Ray,et al.  Genetic algorithm for solving a gas lift optimization problem , 2007 .

[81]  David W. Corne,et al.  Approximating the Nondominated Front Using the Pareto Archived Evolution Strategy , 2000, Evolutionary Computation.

[82]  Thomas Stützle,et al.  Pareto Local Optimum Sets in the Biobjective Traveling Salesman Problem: An Experimental Study , 2004, Metaheuristics for Multiobjective Optimisation.

[83]  Gary B. Lamont,et al.  Evolutionary Algorithms for Solving Multi-Objective Problems , 2002, Genetic Algorithms and Evolutionary Computation.

[84]  Francisco Herrera,et al.  Adaptive local search parameters for real-coded memetic algorithms , 2005, 2005 IEEE Congress on Evolutionary Computation.

[85]  E. L. Ulungu,et al.  MOSA method: a tool for solving multiobjective combinatorial optimization problems , 1999 .

[86]  Marios K. Karakasis,et al.  Hierarchical distributed metamodel‐assisted evolutionary algorithms in shape optimization , 2007 .

[87]  Jim Smith,et al.  Memetic Algorithms: The Polynomial Local Search Complexity Theory Perspective , 2008, J. Math. Model. Algorithms.

[88]  Raino A. E. Mäkinen,et al.  An adaptive evolutionary algorithm with intelligent mutation local searchers for designing multidrug therapies for HIV , 2007, Applied Intelligence.

[89]  Pablo Moscato,et al.  A Gentle Introduction to Memetic Algorithms , 2003, Handbook of Metaheuristics.

[90]  Ferrante Neri,et al.  A memetic Differential Evolution approach in noisy optimization , 2010, Memetic Comput..

[91]  Kenneth Steiglitz,et al.  Combinatorial Optimization: Algorithms and Complexity , 1981 .

[92]  Bernd Freisleben,et al.  Fitness landscapes and memetic algorithm design , 1999 .

[93]  Pablo Moscato,et al.  On Evolution, Search, Optimization, Genetic Algorithms and Martial Arts : Towards Memetic Algorithms , 1989 .

[94]  Chee Keong Kwoh,et al.  A study on constrained MA using GA and SQP: Analytical vs. finite-difference gradients , 2008, 2008 IEEE Congress on Evolutionary Computation (IEEE World Congress on Computational Intelligence).

[95]  Edmund K. Burke,et al.  A multi-objective approach for robust airline scheduling , 2010, Comput. Oper. Res..

[96]  Jim Smith,et al.  Co-evolving Memetic Algorithms: Initial Investigations , 2002, PPSN.

[97]  L. Darrell Whitley,et al.  Using Reproductive Evaluation to Improve Genetic Search and Heuristic Discovery , 1987, ICGA.

[98]  Maoguo Gong,et al.  Baldwinian learning in clonal selection algorithm for optimization , 2010, Inf. Sci..

[99]  T. Rogalsky,et al.  HYBRIDIZATION OF DIFFERENTIAL EVOLUTION FOR AERODYNAMIC DESIGN , 2000 .

[100]  Terence C. Fogarty,et al.  Adaptive Combustion Balancing in Multiple Burner Boiler Using a Genetic Algorithm with Variable Range of Local Search , 1997, ICGA.

[101]  Mark Sumner,et al.  A Fast Adaptive Memetic Algorithm for Online and Offline Control Design of PMSM Drives , 2007, IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics).

[102]  Jong-Bae Park,et al.  A hybrid genetic algorithm/dynamic programming approach to optimal long-term generation expansion planning , 1998 .

[103]  Jing Tang,et al.  Diversity-adaptive parallel memetic algorithm for solving large scale combinatorial optimization problems , 2006, Soft Comput..

[104]  J. van Leeuwen,et al.  Genetic and Evolutionary Computation — GECCO 2003 , 2003, Lecture Notes in Computer Science.

[105]  Yaochu Jin,et al.  Single/Multi-objective Inverse Robust Evolutionary Design Methodology in the Presence of Uncertainty , 2007, Evolutionary Computation in Dynamic and Uncertain Environments.

[106]  Pablo Moscato,et al.  A memetic algorithm for the total tardiness single machine scheduling problem , 2001, Eur. J. Oper. Res..

[107]  Ferrante Neri,et al.  Integrating Cross-Dominance Adaptation in Multi-Objective Memetic Algorithms , 2009 .

[108]  Prabhat Hajela,et al.  Genetic search strategies in multicriterion optimal design , 1991 .

[109]  Bernd Freisleben,et al.  A genetic local search algorithm for solving symmetric and asymmetric traveling salesman problems , 1996, Proceedings of IEEE International Conference on Evolutionary Computation.

[110]  L. Watson,et al.  Trust Region Augmented Lagrangian Methods for Sequential Response Surface Approximation and Optimization , 1998 .

[111]  Janez Brest,et al.  Population size reduction for the differential evolution algorithm , 2008, Applied Intelligence.

[112]  Jim Smith,et al.  Protein structure prediction with co-evolving memetic algorithms , 2003, The 2003 Congress on Evolutionary Computation, 2003. CEC '03..

[113]  Bernhard Sendhoff,et al.  Generalizing Surrogate-Assisted Evolutionary Computation , 2010, IEEE Transactions on Evolutionary Computation.

[114]  P. N. Suganthan,et al.  Ensemble of niching algorithms , 2010, Inf. Sci..

[115]  Bernhard Sendhoff,et al.  A framework for evolutionary optimization with approximate fitness functions , 2002, IEEE Trans. Evol. Comput..

[116]  Hisao Ishibuchi,et al.  A multi-objective genetic local search algorithm and its application to flowshop scheduling , 1998, IEEE Trans. Syst. Man Cybern. Part C.

[117]  Yueguang Lu,et al.  A direct first principles study on the structure and electronic properties of BexZn1−xO , 2007 .

[118]  Ferrante Neri,et al.  Differential Evolution with Scale Factor Local Search for Large Scale Problems , 2010 .

[119]  Carlos García-Martínez,et al.  Hybrid metaheuristics with evolutionary algorithms specializing in intensification and diversification: Overview and progress report , 2010, Comput. Oper. Res..

[120]  R. Lewontin ‘The Selfish Gene’ , 1977, Nature.

[121]  Bernhard Sendhoff,et al.  Lamarckian memetic algorithms: local optimum and connectivity structure analysis , 2009, Memetic Comput..

[122]  Kay Chen Tan,et al.  Evolving the Tradeoffs between Pareto-Optimality and Robustness in Multi-Objective Evolutionary Algorithms , 2007, Evolutionary Computation in Dynamic and Uncertain Environments.

[123]  Yew-Soon Ong,et al.  A proposition on memes and meta-memes in computing for higher-order learning , 2009, Memetic Comput..

[124]  M. Hansen,et al.  Tabu search for multiobjective combinatorial optimization : TAMOCO , 2000 .

[125]  Tim Hendtlass,et al.  A simple and efficient multi-component algorithm for solving dynamic function optimisation problems , 2007, 2007 IEEE Congress on Evolutionary Computation.

[126]  A. Keane,et al.  Evolutionary Optimization of Computationally Expensive Problems via Surrogate Modeling , 2003 .

[127]  Raymond Chiong,et al.  Dynamic function optimisation with hybridised extremal dynamics , 2010, Memetic Comput..

[128]  Peter I. Cowling,et al.  Hyperheuristics: Recent Developments , 2008, Adaptive and Multilevel Metaheuristics.

[129]  Ruhul A. Sarker,et al.  Memetic algorithms for solving job-shop scheduling problems , 2009, Memetic Comput..

[130]  Kyriakos C. Giannakoglou,et al.  Design of optimal aerodynamic shapes using stochastic optimization methods and computational intelligence , 2002 .

[131]  Derek B. Ingham,et al.  Simple Scheduled Memetic Algorithm for inverse problems in higher dimensions: Application to chemical kinetics , 2008, 2008 IEEE Congress on Evolutionary Computation (IEEE World Congress on Computational Intelligence).

[132]  Yew-Soon Ong,et al.  Memetic Computation—Past, Present & Future [Research Frontier] , 2010, IEEE Computational Intelligence Magazine.

[133]  Derek B. Ingham,et al.  Fitness Diversity Based Adaptive Memetic Algorithm for solving inverse problems of chemical kinetics , 2007, 2007 IEEE Congress on Evolutionary Computation.

[134]  Terry Jones,et al.  Crossover, Macromutationand, and Population-Based Search , 1995, ICGA.

[135]  Ajith Abraham,et al.  A Hybrid Genetic Algorithm and Bacterial Foraging Approach for Global Optimization and Robust Tuning of PID Controller with Disturbance Rejection , 2007 .

[136]  Natalio Krasnogor,et al.  Self Generating Metaheuristics in Bioinformatics: The Proteins Structure Comparison Case , 2004, Genetic Programming and Evolvable Machines.

[137]  Dirk Sudholt Memetic algorithms with variable-depth search to overcome local optima , 2008, GECCO '08.

[138]  Ville Tirronen,et al.  An Enhanced Memetic Differential Evolution in Filter Design for Defect Detection in Paper Production , 2008, Evolutionary Computation.

[139]  Carlos Cotta,et al.  Solving Weighted Constraint Satisfaction Problems with Memetic/Exact Hybrid Algorithms , 2009, J. Artif. Intell. Res..

[140]  K. Deb An Efficient Constraint Handling Method for Genetic Algorithms , 2000 .

[141]  Peter Merz,et al.  Advanced Fitness Landscape Analysis and the Performance of Memetic Algorithms , 2004, Evolutionary Computation.

[142]  John J. Grefenstette,et al.  Genetic Algorithms for Tracking Changing Environments , 1993, ICGA.

[143]  Ville Tirronen,et al.  Shuffle or update parallel differential evolution for large-scale optimization , 2011, Soft Comput..

[144]  Bernd Freisleben,et al.  Fitness Landscapes, Memetic Algorithms, and Greedy Operators for Graph Bipartitioning , 2000, Evolutionary Computation.

[145]  Graham Kendall,et al.  A Tabu-Search Hyperheuristic for Timetabling and Rostering , 2003, J. Heuristics.

[146]  Jim E. Smith,et al.  Coevolving Memetic Algorithms: A Review and Progress Report , 2007, IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics).

[147]  Janez Brest,et al.  Performance comparison of self-adaptive and adaptive differential evolution algorithms , 2007, Soft Comput..

[148]  Ville Tirronen,et al.  Super-fit control adaptation in memetic differential evolution frameworks , 2009, Soft Comput..

[149]  Natalio Krasnogor,et al.  A Study on the use of ``self-generation'' in memetic algorithms , 2004, Natural Computing.

[150]  Elena Marchiori,et al.  An Evolutionary Algorithm for Large Scale Set Covering Problems with Application to Airline Crew Scheduling , 2000, EvoWorkshops.

[151]  David E. Goldberg,et al.  Genetic Algorithms in Search Optimization and Machine Learning , 1988 .

[152]  P. N. Suganthan,et al.  Differential Evolution Algorithm With Strategy Adaptation for Global Numerical Optimization , 2009, IEEE Transactions on Evolutionary Computation.

[153]  Carlos Cotta,et al.  On the Hybridization of Memetic Algorithms With Branch-and-Bound Techniques , 2007, IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics).

[154]  Ruhul A. Sarker,et al.  AMA: a new approach for solving constrained real-valued optimization problems , 2009, Soft Comput..

[155]  Piotr Czyzżak,et al.  Pareto simulated annealing—a metaheuristic technique for multiple‐objective combinatorial optimization , 1998 .

[156]  Xin Yao,et al.  A new evolutionary system for evolving artificial neural networks , 1997, IEEE Trans. Neural Networks.

[157]  Tapabrata Ray,et al.  Infeasibility Driven Evolutionary Algorithm for Constrained Optimization , 2009 .

[158]  H. H. Rosenbrock,et al.  An Automatic Method for Finding the Greatest or Least Value of a Function , 1960, Comput. J..

[159]  Kok Wai Wong,et al.  Surrogate-Assisted Evolutionary Optimization Frameworks for High-Fidelity Engineering Design Problems , 2005 .

[160]  Yoel Tenne,et al.  A framework for memetic optimization using variable global and local surrogate models , 2009, Soft Comput..

[161]  Niko Kotilainen,et al.  An Adaptive Global-Local Memetic Algorithm to Discover Resources in P2P Networks , 2007, EvoWorkshops.

[162]  Bogdan Filipic,et al.  The differential ant-stigmergy algorithm , 2012, Inf. Sci..

[163]  Ferrante Neri,et al.  An Adaptive Multimeme Algorithm for Designing HIV Multidrug Therapies , 2007, IEEE/ACM Transactions on Computational Biology and Bioinformatics.

[164]  Carlos Cotta,et al.  Embedding Branch and Bound within Evolutionary Algorithms , 2003, Applied Intelligence.

[165]  Ingo Rechenberg,et al.  Evolutionsstrategie : Optimierung technischer Systeme nach Prinzipien der biologischen Evolution , 1973 .

[166]  Jürgen Branke,et al.  Evolutionary optimization in uncertain environments-a survey , 2005, IEEE Transactions on Evolutionary Computation.

[167]  Ender Özcan,et al.  Steady State Memetic Algorithm for Partial Shape Matching , 1998, Evolutionary Programming.

[168]  Kalyanmoy Deb,et al.  A Fast Elitist Non-dominated Sorting Genetic Algorithm for Multi-objective Optimisation: NSGA-II , 2000, PPSN.

[169]  Frank Hoffmeister,et al.  Adaptive Search by Evolutionary Algorithms , 1990 .

[170]  Ville Tirronen,et al.  Fitness diversity based adaptation in Multimeme Algorithms:A comparative study , 2007, 2007 IEEE Congress on Evolutionary Computation.

[171]  D. Fogel Evolutionary algorithms in theory and practice , 1997, Complex..

[172]  Ferrante Neri,et al.  A fast evolutionary-deterministic algorithm to study multimodal current fields under safety level , 2006 .

[173]  Abdellah El-Fallahi,et al.  A memetic algorithm and a tabu search for the multi-compartment vehicle routing problem , 2008, Comput. Oper. Res..

[174]  Shengxiang Yang,et al.  A memetic algorithm with adaptive hill climbing strategy for dynamic optimization problems , 2009, Soft Comput..

[175]  Reinhard Männer,et al.  Parallel Problem Solving from Nature , 1991 .

[176]  Andrzej Jaszkiewicz,et al.  Speed-up techniques for solving large-scale biobjective TSP , 2010, Comput. Oper. Res..

[177]  Arthur C. Sanderson,et al.  Minimal representation multisensor fusion using differential evolution , 1999, IEEE Trans. Syst. Man Cybern. Part A.

[178]  Hugues Bersini,et al.  A new GA-Local Search Hybrid for Continuous Optimization Based on Multi-Level Single Linkage Clustering , 2000, GECCO.

[179]  Raymond Chiong,et al.  A Hooke-Jeeves Based Memetic Algorithm for Solving Dynamic Optimisation Problems , 2009, HAIS.

[180]  Terence C. Fogarty,et al.  Performance of a Genetic Algorithm with Variable Local Search Range Relative to Frequency of the Environmental Changes , 1998 .

[181]  Meng Joo Er,et al.  PARALLEL MEMETIC ALGORITHM WITH SELECTIVE LOCAL SEARCH FOR LARGE SCALE QUADRATIC ASSIGNMENT PROBLEMS , 2006 .

[182]  Regina Berretta,et al.  A memetic algorithm for a multistage capacitated lot-sizing problem , 2004 .

[183]  Bernd Freisleben,et al.  Fitness landscape analysis and memetic algorithms for the quadratic assignment problem , 2000, IEEE Trans. Evol. Comput..

[184]  Bernd Freisleben,et al.  Memetic Algorithms for the Traveling Salesman Problem , 2002, Complex Syst..

[185]  Jim Smith,et al.  A Memetic Algorithm With Self-Adaptive Local Search: TSP as a case study , 2000, GECCO.

[186]  James R. Wilson,et al.  Empirical Investigation of the Benefits of Partial Lamarckianism , 1997, Evolutionary Computation.

[187]  Yoel Tenne,et al.  A Model-Assisted Memetic Algorithm for Expensive Optimization Problems , 2009, Nature-Inspired Algorithms for Optimisation.

[188]  Yoel Tenne,et al.  A Memetic Algorithm Using a Trust-Region Derivative-Free Optimization with Quadratic Modelling for Optimization of Expensive and Noisy Black-box Functions , 2007, Evolutionary Computation in Dynamic and Uncertain Environments.

[189]  Yew-Soon Ong,et al.  A Probabilistic Memetic Framework , 2009, IEEE Transactions on Evolutionary Computation.

[190]  Hans-Paul Schwefel,et al.  Evolution strategies: A family of non-linear optimization techniques based on imitating some principles of organic evolution , 1984, Ann. Oper. Res..

[191]  Nubia Velasco,et al.  A memetic algorithm for the multi-compartment vehicle routing problem with stochastic demands , 2008, Comput. Oper. Res..

[192]  Ville Tirronen,et al.  Scale factor local search in differential evolution , 2009, Memetic Comput..

[193]  Andy J. Keane,et al.  Meta-Lamarckian learning in memetic algorithms , 2004, IEEE Transactions on Evolutionary Computation.

[194]  Jürgen Teich,et al.  Systematic integration of parameterized local search into evolutionary algorithms , 2004, IEEE Transactions on Evolutionary Computation.

[195]  Carlos Cotta,et al.  Optimal Discrete Recombination: Hybridising Evolution Strategies with the A* Algorithm , 1999, IWANN.

[196]  F. Glover,et al.  Fundamentals of Scatter Search and Path Relinking , 2000 .

[197]  Kevin Kok Wai Wong,et al.  Classification of adaptive memetic algorithms: a comparative study , 2006, IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics).

[198]  Ponnuthurai N. Suganthan,et al.  Real-parameter evolutionary multimodal optimization - A survey of the state-of-the-art , 2011, Swarm Evol. Comput..

[199]  Andrzej Jaszkiewicz,et al.  On the performance of multiple-objective genetic local search on the 0/1 knapsack problem - a comparative experiment , 2002, IEEE Trans. Evol. Comput..

[200]  Hussein A. Abbass,et al.  An evolutionary artificial neural networks approach for breast cancer diagnosis , 2002, Artif. Intell. Medicine.

[201]  Natalio Krasnogor,et al.  Emergence of profitable search strategies based on a simple inheritance mechanism , 2001 .

[202]  Kiyoharu Tagawa,et al.  Robust optimum design of SAW filters with the Taguchi method and a memetic algorithm , 2005, 2005 IEEE Congress on Evolutionary Computation.

[203]  Dirk Van Gucht,et al.  The effects of population size, heuristic crossover and local improvement on a genetic algorithm for the traveling salesman problem , 1989 .

[204]  Katya Scheinberg,et al.  Recent progress in unconstrained nonlinear optimization without derivatives , 1997, Math. Program..

[205]  Bernd Freisleben,et al.  New Genetic Local Search Operators for the Traveling Salesman Problem , 1996, PPSN.

[206]  Qingfu Zhang,et al.  This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination. IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION 1 RM-MEDA: A Regularity Model-Based Multiobjective Estimation of , 2022 .

[207]  R. K. Ursem Multi-objective Optimization using Evolutionary Algorithms , 2009 .

[208]  Louis Wehenkel,et al.  A hybrid optimization technique coupling an evolutionary and a local search algorithm , 2008 .

[209]  Heinz Mühlenbein,et al.  The parallel genetic algorithm as function optimizer , 1991, Parallel Comput..

[210]  N. Salvatore,et al.  Surrogate assisted local search in PMSM drive design , 2008 .

[211]  R. Belew,et al.  Evolutionary algorithms with local search for combinatorial optimization , 1998 .

[212]  Terry Jones,et al.  One Operator, One Landscape , 1995 .

[213]  Shengxiang Yang,et al.  A particle swarm optimization based memetic algorithm for dynamic optimization problems , 2010, Natural Computing.

[214]  John J. Grefenstette,et al.  Genetic Algorithms for Changing Environments , 1992, PPSN.

[215]  Edmund K. Burke,et al.  Multimeme Algorithms for Protein Structure Prediction , 2002, PPSN.

[216]  Ponnuthurai N. Suganthan,et al.  Self-adaptive differential evolution with multi-trajectory search for large-scale optimization , 2011, Soft Comput..

[217]  Peter Merz,et al.  A Memetic Algorithm for the Optimum Communication Spanning Tree Problem , 2007, Hybrid Metaheuristics.

[218]  Yuval Davidor,et al.  The Interplay Among the Genetic Algorithm Operators: Information Theory Tools Used in a Holistic Way , 1992, PPSN.

[219]  Edmund K. Burke,et al.  A Memetic Algorithm for University Exam Timetabling , 1995, PATAT.

[220]  Jim Smith,et al.  The Co-Evolution of Memetic Algorithms for Protein Structure Prediction , 2005 .

[221]  António Gaspar-Cunha,et al.  A Multi-Objective Evolutionary Algorithm Using Neural Networks to Approximate Fitness Evaluations , 2005, Int. J. Comput. Syst. Signals.

[222]  Stefan Boettcher,et al.  Extremal Optimization: Methods derived from Co-Evolution , 1999, GECCO.