New important developments in small area estimation

The problem of small area estimation (SAE) is how to produce reliable estimates of characteristics of interest such as means, counts, quantiles, etc., for areas or domains for which only small samples or no samples are available, and how to assess their precision. The purpose of this paper is to review and discuss some of the new important developments in small area estimation methods. Rao (2003) wrote a very comprehensive book, which covers all the main developments in this topic until that time. A few review papers have been written after 2003 but they are limited in scope. Hence, the focus of this review is on new developments in the last 7-8 years but to make the review more self-contained, I also mention shortly some of the older developments. The review covers both design-based and model-dependent methods, with the latter methods further classified into frequentist and Bayesian methods. The style of the paper is similar to the style of my previous review on SAE published in 2002, explaining the new problems investigated and describing the proposed solutions, but without dwelling on theoretical details, which can be found in the original articles. I hope that this paper will be useful both to researchers who like to learn more on the research carried out in SAE and to practitioners who might be interested in the application of the new methods.

[1]  J. Rao,et al.  Empirical Bayes Estimation of Small Area Means under a Nested Error Linear Regression Model with Measurement Errors in the Covariates , 2009 .

[2]  Danny Pfeffermann,et al.  Small-Area Estimation With State–Space Models Subject to Benchmark Constraints , 2006 .

[3]  Jun Liu,et al.  Correcting the Bias in the Range of a Statistic Across Small Areas , 2000 .

[4]  J. N. K. Rao,et al.  Robust Small Area Estimation Using Penalized Spline Mixed Models , 2009 .

[5]  Snigdhansu Chatterjee,et al.  Parametric bootstrap approximation to the distribution of EBLUP and related prediction intervals in linear mixed models , 2008, 0806.2931.

[6]  N. Tzavidis,et al.  M-quantile models for small area estimation , 2006 .

[7]  Tapabrata Maiti,et al.  On parametric bootstrap methods for small area prediction , 2006 .

[8]  Lixia Diao,et al.  Robust small area estimation , 2008 .

[9]  R. Lehtonen,et al.  Chapter 31 - Design-based Methods of Estimation for Domains and Small Areas , 2009 .

[10]  M. Ghosh,et al.  Influence functions and robust Bayes and empirical Bayes small area estimation , 2008 .

[11]  Joseph Sedransk,et al.  Bayesian diagnostic techniques for detecting hierarchical structure , 2007 .

[12]  W. Davis,et al.  Model-based small area estimates of overweight prevalence using sample selection adjustment. , 1999, Statistics in medicine.

[13]  Yves Tillé Balanced Sampling , 2011, International Encyclopedia of Statistical Science.

[14]  William R. Bell,et al.  Using the t-distribution to Deal with Outliers in Small Area Estimation , 2006 .

[15]  Federico Poloni Of Note , 2009 .

[16]  William R. Bell,et al.  Using the t-distribution in Small Area Estimation : An Application to SAIPE State Poverty Models , 2006 .

[17]  P. Lahiri,et al.  On Mean Squared Prediction Error Estimation in Small Area Estimation Problems , 2008 .

[18]  Joseph Sedransk,et al.  A note on Bayesian residuals as a hierarchical model diagnostic technique , 2007 .

[19]  Jiming Jiang,et al.  A unified jackknife theory for empirical best prediction with M-estimation , 2002 .

[20]  J. Rao,et al.  Some Methods for Small Area Estimation , 2008 .

[21]  Mahmoud Torabi,et al.  Pseudo-empirical Bayes estimation of small area means under a nested error linear regression model with functional measurement errors , 2010 .

[22]  Thomas J. Tomberlin,et al.  SMALL AREA ESTIMATES OF PROPORTIONS VIA EMPIRICAL BAYES TECHNIQUES , 2002 .

[23]  Junyuan Wang,et al.  Small Area Estimation Under a Restriction , 2002 .

[24]  Hukum Chandra,et al.  Multipurpose Small Area Estimation , 2008 .

[25]  Yosef Rinott,et al.  Prediction of ordered random effects in a simple small area model , 2009, 0909.4551.

[26]  Malay Ghosh,et al.  Small Area Estimation: An Appraisal , 1994 .

[27]  Piero Demetrio Falorsi,et al.  A balanced sampling approach for multi-way stratification designs for small area estimation , 2008 .

[28]  Carl-Erik Särndal,et al.  Survey Estimates by Calibration on Complex Auxiliary Information , 2006 .

[29]  M. Gurka Selecting the Best Linear Mixed Model Under REML , 2006 .

[30]  M. Ghosh,et al.  Empirical and Hierarchical Bayesian Estimation in Finite Population Sampling under Structural Measurement Error Models , 2006 .

[31]  Danny Pfeffermann,et al.  Small Area Estimation , 2011, International Encyclopedia of Statistical Science.

[32]  Mahmoud Torabi,et al.  Small area estimation under a two-level model , 2008 .

[33]  Tom Krenzke,et al.  Hierarchical Bayes Small Area Estimates of Adult Literacy Using Unmatched Sampling and Linking Models , 2007 .

[34]  María Dolores Ugarte,et al.  Benchmarked estimates in small areas using linear mixed models with restrictions , 2009 .

[35]  Rachel M. Harter,et al.  An Error-Components Model for Prediction of County Crop Areas Using Survey and Satellite Data , 1988 .

[36]  J. N. K. Rao,et al.  A pseudo‐empirical best linear unbiased prediction approach to small area estimation using survey weights , 2002 .

[37]  Philip Clarke,et al.  Small area estimation under varying area boundaries using the synthetic estimator , 2005 .

[38]  N. Tzavidis,et al.  On Bias-Robust Mean Squared Error Estimation for Pseudo-Linear Small Area Estimators , 2009 .

[39]  N. Cressie,et al.  Loss functions for estimation of extrema with an application to disease mapping , 2003 .

[40]  N. G. N. Prasad,et al.  The estimation of mean-squared errors of small-area estimators , 1990 .

[41]  Danny Pfeffermann,et al.  Small Area Estimation under a Two Part Random Effects Model with Application to Estimation of Literacy in Developing Countries , 2008 .

[42]  Danny Pfeffermann,et al.  Empirical bootstrap bias correction and estimation of prediction mean square error in small area estimation , 2012 .

[43]  J. Rao,et al.  On measuring the variability of small area estimators under a basic area level model , 2005 .

[44]  T. Louis,et al.  Triple‐goal estimates in two‐stage hierarchical models , 1998 .

[45]  Lu Lu,et al.  Bayesian Checking of the Second Levels of Hierarchical Models. Comment. , 2007 .

[46]  Donald Malec,et al.  Small Area Inference for Binary Variables in the National Health Interview Survey , 1997 .

[47]  D. Pfeffermann,et al.  Small-Area Estimation Under Informative Probability Sampling of Areas and Within the Selected Areas , 2007 .

[48]  G. Datta Model-Based Approach to Small Area Estimation , 2009 .

[49]  P. Lahiri,et al.  Robust Estimation of Mean Squared Error of Small Area Estimators , 1995 .

[50]  Malay Ghosh,et al.  Empirical Bayes estimation in finite population sampling under functional measurement error models , 2007 .

[51]  Jiming Jiang,et al.  Mixed model prediction and small area estimation , 2006 .

[52]  D. Pfeffermann Small Area Estimation‐New Developments and Directions , 2002 .

[53]  Balgobin Nandram,et al.  A Bayesian Analysis of Body Mass Index Data From Small Domains Under Nonignorable Nonresponse and Selection , 2010 .

[54]  Jiming Jiang,et al.  Fence method for nonparametric small area estimation , 2010 .

[55]  P. Lahiri,et al.  A new class of average moment matching priors , 2008 .

[56]  F. Breidt,et al.  Non‐parametric small area estimation using penalized spline regression , 2008 .

[57]  Dipak K. Dey,et al.  A simulation-intensive approach for checking hierarchical models , 1998 .

[58]  Phillip S. Kott Calibration Weighting: Combining Probability Samples and Linear Prediction Models , 2009 .

[59]  F. Vaida,et al.  Conditional Akaike information for mixed-effects models , 2005 .

[60]  Robert Chambers,et al.  Small area estimates for cross‐classifications , 2004 .

[61]  J. Rao,et al.  The estimation of the mean squared error of small-area estimators , 1990 .

[62]  Risto Lehtonen,et al.  The Effect of Model Choice in Estimation for Domains, Including Small Domains , 2003 .

[63]  R. Fay,et al.  Estimates of Income for Small Places: An Application of James-Stein Procedures to Census Data , 1979 .

[64]  J. Rao,et al.  Robust small area estimation , 2009 .

[65]  Zhiying Pan,et al.  Goodness‐of‐Fit Methods for Generalized Linear Mixed Models , 2005, Biometrics.

[66]  Bradley P. Carlin,et al.  Generalized Linear Models for Small-Area Estimation , 1998 .

[67]  Rebecca C. Steorts,et al.  Bayesian benchmarking with applications to small area estimation , 2011 .

[68]  P. Hall,et al.  Model Selection by Testing for the Presence of Small-Area Effects, and Application to Area-Level Data , 2011 .

[69]  Malay Ghosh,et al.  Empirical likelihood for small area estimation , 2011 .

[70]  Li-Chun Zhang,et al.  Estimates for small area compositions subjected to informative missing data , 2009 .

[71]  S. Marchetti,et al.  ROBUST ESTIMATION OF SMALL‐AREA MEANS AND QUANTILES , 2010 .

[72]  Carl-Erik Särndal,et al.  Borrowing Strength Is Not the Best Technique Within a Wide Class of Design-Consistent Domain Estimators , 2005 .

[73]  S. Lohr,et al.  Small area estimation when auxiliary information is measured with error , 2008 .

[74]  Monica Pratesi,et al.  Small area estimation: the EBLUP estimator based on spatially correlated random area effects , 2008, Stat. Methods Appl..

[75]  J. S. Rao,et al.  Fence methods for mixed model selection , 2008, 0808.0985.

[76]  Jiming Jiang,et al.  Estimation of Finite Population Domain Means , 2006 .

[77]  J. Rao,et al.  Jackknife estimation of mean squared error of small area predictors in nonlinear mixed models , 2009 .

[78]  J. S. Rao,et al.  Best Predictive Small Area Estimation , 2011 .

[79]  Jiming Jiang,et al.  Mean squared error of empirical predictor , 2004, math/0406455.

[80]  P. Lahiri,et al.  A UNIFIED MEASURE OF UNCERTAINTY OF ESTIMATED BEST LINEAR UNBIASED PREDICTORS IN SMALL AREA ESTIMATION PROBLEMS , 2000 .

[81]  Domingo Morales González,et al.  Small area estimation of poverty indicators , 2009 .