Rapid Processing of Uniform, Thin, Robust, and Large‐Area Garnet Solid Electrolyte by Atmospheric Plasma Spraying

[1]  J. Janek,et al.  Challenges in speeding up solid-state battery development , 2023, Nature Energy.

[2]  M. Avdeev,et al.  Energy landscape for Li-ion diffusion in the garnet-type solid electrolyte Li6.5La3Zr1.5Nb0.5O12 (LLZO-Nb) , 2022, Zeitschrift für Naturforschung B.

[3]  Yong Zhu,et al.  Nano-agglomerated powder and thermal shock cycling property of 8YSZ nano-structured thermal barrier coating , 2022, Surface and Coatings Technology.

[4]  T. Troczynski,et al.  A novel approach to prepare Li-La-Zr-O solid state electrolyte films by suspension plasma spray , 2021 .

[5]  Fei Chen,et al.  Garnet-type solid electrolyte: Advances of ionic transport performance and its application in all-solid-state batteries , 2021, Journal of Advanced Ceramics.

[6]  H. Wiggers,et al.  Spray Flame Synthesis (SFS) of Lithium Lanthanum Zirconate (LLZO) Solid Electrolyte , 2021, Materials.

[7]  Zachary D. Hood,et al.  Processing thin but robust electrolytes for solid-state batteries , 2021, Nature Energy.

[8]  Lingping Kong,et al.  Solid‐State Li–Metal Batteries: Challenges and Horizons of Oxide and Sulfide Solid Electrolytes and Their Interfaces , 2020, Advanced Energy Materials.

[9]  M. Döbeli,et al.  Lithium Garnet Li7La3Zr2O12 Electrolyte for All‐Solid‐State Batteries: Closing the Gap between Bulk and Thin Film Li‐Ion Conductivities , 2020, Advanced Materials Interfaces.

[10]  Hong‐Jie Peng,et al.  Garnet Solid Electrolyte for Advanced All‐Solid‐State Li Batteries , 2020, Advanced Energy Materials.

[11]  L. Archer,et al.  Designing solid-state electrolytes for safe, energy-dense batteries , 2020, Nature Reviews Materials.

[12]  Haihui Wang,et al.  Tape‐Casting Li0.34La0.56TiO3 Ceramic Electrolyte Films Permit High Energy Density of Lithium‐Metal Batteries , 2019, Advanced materials.

[13]  S. Joshi,et al.  Advanced Coatings by Thermal Spray Processes , 2019, Technologies.

[14]  Bing Huang,et al.  Enhanced mechanical strength and ionic conductivity of LLZO solid electrolytes by oscillatory pressure sintering , 2019, Ceramics International.

[15]  Chun-Liang Chang,et al.  Fabrication and Characterization of Metal-Supported Solid Oxide Fuel Cell Fabricated by Atmospheric Plasma Spraying , 2019, ECS Transactions.

[16]  J. Rupp,et al.  A low ride on processing temperature for fast lithium conduction in garnet solid-state battery films , 2019, Nature Energy.

[17]  C. Nan,et al.  Solid Garnet Batteries , 2019, Joule.

[18]  C. Nan,et al.  Solid polymer electrolyte soft interface layer with 3D lithium anode for all-solid-state lithium batteries , 2019, Energy Storage Materials.

[19]  Yantao Zhang,et al.  Unlocking the Energy Capabilities of Lithium Metal Electrode with Solid-State Electrolytes , 2018, Joule.

[20]  L. Łatka Thermal Barrier Coatings Manufactured by Suspension Plasma Spraying - A Review , 2018, Advances in Materials Science.

[21]  Yan‐Bing He,et al.  Challenges and perspectives of garnet solid electrolytes for all solid-state lithium batteries , 2018, Journal of Power Sources.

[22]  Wei Luo,et al.  Promises, Challenges, and Recent Progress of Inorganic Solid‐State Electrolytes for All‐Solid‐State Lithium Batteries , 2018, Advanced materials.

[23]  Z. Wen,et al.  Two-step sintering strategy to prepare dense Li-Garnet electrolyte ceramics with high Li+ conductivity , 2017 .

[24]  M. Yuen,et al.  Low temperature pulsed laser deposition of garnet Li 6.4 La 3 Zr 1.4 Ta 0.6 O 12 films as all solid-state lithium battery electrolytes , 2017 .

[25]  Yayuan Liu,et al.  Transforming from planar to three-dimensional lithium with flowable interphase for solid lithium metal batteries , 2017, Science Advances.

[26]  R. Moos,et al.  Thick-films of garnet-type lithium ion conductor prepared by the Aerosol Deposition Method: The role of morphology and annealing treatment on the ionic conductivity , 2017 .

[27]  Kun Fu,et al.  Garnet Solid Electrolyte Protected Li-Metal Batteries. , 2017, ACS applied materials & interfaces.

[28]  Donald J. Siegel,et al.  Electrochemical Window of the Li-Ion Solid Electrolyte Li7La3Zr2O12 , 2017 .

[29]  Chunsheng Wang,et al.  Electrochemical Stability of Li10GeP2S12 and Li7La3Zr2O12 Solid Electrolytes , 2016 .

[30]  B. McCloskey,et al.  Attainable gravimetric and volumetric energy density of Li-S and li ion battery cells with solid separator-protected Li metal anodes. , 2015, The journal of physical chemistry letters.

[31]  Nickolas J. Themelis,et al.  A Perspective on Plasma Spray Technology , 2015, Plasma Chemistry and Plasma Processing.

[32]  Lei Cheng,et al.  Effects of crystallinity and impurities on the electrical conductivity of Li–La–Zr–O thin films , 2015 .

[33]  Fei Chen,et al.  Field assisted sintering of dense Al-substituted cubic phase Li7La3Zr2O12 solid electrolytes , 2014 .

[34]  Chang-An Wang,et al.  Excess lithium salt functions more than compensating for lithium loss when synthesizing Li6.5La3Ta0.5Zr1.5O12 in alumina crucible , 2014 .

[35]  Y. Yoon,et al.  Ionic conductivity properties of amorphous Li–La–Zr–O solid electrolyte for thin film batteries , 2012 .

[36]  J. Sakamoto,et al.  High conductivity of dense tetragonal Li7La3Zr2O12 , 2012 .

[37]  Ying Jin,et al.  Al-doped Li7La3Zr2O12 synthesized by a polymerized complex method , 2011 .

[38]  J. Goodenough,et al.  Challenges for Rechargeable Li Batteries , 2010 .

[39]  Tao Zhang,et al.  Study on lithium/air secondary batteries—Stability of NASICON-type lithium ion conducting glass–ceramics with water , 2009 .

[40]  Yunhui Gong,et al.  High-rate lithium cycling in a scalable trilayer Li-garnet-electrolyte architecture , 2019, Materials Today.

[41]  V. Thangadurai,et al.  X-ray Photoelectron Spectroscopy and AC Impedance Spectroscopy Studies of Li-La-Zr-O Solid Electrolyte Thin Film/LiCoO2 Cathode Interface for All-Solid-State Li Batteries , 2017 .