Identification of dual-active sites in cobalt phthalocyanine for electrochemical carbon dioxide reduction

[1]  Zhi Wei Seh,et al.  Understanding heterogeneous electrocatalytic carbon dioxide reduction through operando techniques , 2018, Nature Catalysis.

[2]  Z. Tian,et al.  Reaction Mechanisms of Well-Defined Metal-N4 Sites in Electrocatalytic CO2 Reduction. , 2018, Angewandte Chemie.

[3]  Jinghua Guo,et al.  Conversion reaction of vanadium sulfide electrode in the lithium-ion cell: Reversible or not reversible? , 2018, Nano Energy.

[4]  Christine M. Gabardo,et al.  CO2 electroreduction to ethylene via hydroxide-mediated copper catalysis at an abrupt interface , 2018, Science.

[5]  Michael Roemelt,et al.  Homogeneously Catalyzed Electroreduction of Carbon Dioxide-Methods, Mechanisms, and Catalysts. , 2018, Chemical reviews.

[6]  Buxing Han,et al.  Fundamentals and Challenges of Electrochemical CO2 Reduction Using Two-Dimensional Materials , 2017 .

[7]  Jinlong Gong,et al.  Nanostructured Materials for Heterogeneous Electrocatalytic CO2 Reduction and their Related Reaction Mechanisms. , 2017, Angewandte Chemie.

[8]  Michael B. Ross,et al.  Tunable Cu Enrichment Enables Designer Syngas Electrosynthesis from CO2. , 2017, Journal of the American Chemical Society.

[9]  Jeremy T. Feaster,et al.  Understanding Selectivity for the Electrochemical Reduction of Carbon Dioxide to Formic Acid and Carbon Monoxide on Metal Electrodes , 2017 .

[10]  J. Nørskov,et al.  Electrochemical Activation of CO2 through Atomic Ordering Transformations of AuCu Nanoparticles. , 2017, Journal of the American Chemical Society.

[11]  N. Russo,et al.  Syngas production from electrochemical reduction of CO2: current status and prospective implementation , 2017 .

[12]  Hailiang Wang,et al.  Highly selective and active CO2 reduction electrocatalysts based on cobalt phthalocyanine/carbon nanotube hybrid structures , 2017, Nature Communications.

[13]  Jingguang G. Chen,et al.  The Central Role of Bicarbonate in the Electrochemical Reduction of Carbon Dioxide on Gold. , 2017, Journal of the American Chemical Society.

[14]  K. Takanabe,et al.  Simultaneous Reduction of CO2 and Splitting of H2O by a Single Immobilized Cobalt Phthalocyanine Electrocatalyst , 2016 .

[15]  Haoshen Zhou,et al.  Material/element-dependent fluorescence-yield modes on soft X-ray absorption spectroscopy of cathode materials for Li-ion batteries , 2016 .

[16]  J. Savéant,et al.  Current Issues in Molecular Catalysis Illustrated by Iron Porphyrins as Catalysts of the CO2-to-CO Electrochemical Conversion. , 2015, Accounts of chemical research.

[17]  H. Peisert,et al.  Charge transfer between transition metal phthalocyanines and metal substrates: The role of the transition metal , 2015 .

[18]  F. Calle‐Vallejo,et al.  Catalysts and Reaction Pathways for the Electrochemical Reduction of Carbon Dioxide. , 2015, The journal of physical chemistry letters.

[19]  M. Ivanovic,et al.  Influence of Graphene on Charge Transfer between CoPc and Metals: The Role of Graphene–Substrate Coupling , 2015 .

[20]  N. Hollmann,et al.  An unusual high-spin ground state of Co3+ in octahedral coordination in brownmillerite-type cobalt oxide. , 2015, Dalton transactions.

[21]  K. Phani,et al.  Selective reduction of CO2 to formate through bicarbonate reduction on metal electrodes: new insights gained from SG/TC mode of SECM. , 2014, Chemical communications.

[22]  A. Asthagiri,et al.  Selectivity of CO(2) reduction on copper electrodes: the role of the kinetics of elementary steps. , 2013, Angewandte Chemie.

[23]  Thomas F. Jaramillo,et al.  New insights into the electrochemical reduction of carbon dioxide on metallic copper surfaces , 2012 .

[24]  Colin Finn,et al.  Molecular approaches to the electrochemical reduction of carbon dioxide. , 2012, Chemical communications.

[25]  J. Cezar,et al.  Mixed-valence behavior and strong correlation effects of metal phthalocyanines adsorbed on metals , 2011 .

[26]  Robert T McGibbon,et al.  Electrocatalytic carbon dioxide activation: the rate-determining step of pyridinium-catalyzed CO2 reduction. , 2011, ChemSusChem.

[27]  F. Himpsel,et al.  X-ray absorption spectroscopy of biomimetic dye molecules for solar cells. , 2009, The Journal of chemical physics.

[28]  Aaron J. Sathrum,et al.  Electrocatalytic and homogeneous approaches to conversion of CO2 to liquid fuels. , 2009, Chemical Society reviews.

[29]  Narendra K. Gupta,et al.  Electrochemical reduction of CO2 to hydrocarbons to store renewable electrical energy and upgrade biogas , 2007 .

[30]  K. Hodgson,et al.  Fe L-edge X-ray absorption spectroscopy of low-spin heme relative to non-heme Fe complexes: delocalization of Fe d-electrons into the porphyrin ligand. , 2007, Journal of the American Chemical Society.

[31]  N. Lewis,et al.  Powering the planet: Chemical challenges in solar energy utilization , 2006, Proceedings of the National Academy of Sciences.

[32]  Yi Luo,et al.  The electronic structure of iron phthalocyanine probed by photoelectron and x-ray absorption spectroscopies and density functional theory calculations. , 2006, The Journal of chemical physics.

[33]  H. Siegbahn,et al.  Electronic structure of a vapor-deposited metal-free phthalocyanine thin film. , 2005, The Journal of chemical physics.

[34]  K. Hodgson,et al.  L-edge X-ray absorption spectroscopy of non-heme iron sites: experimental determination of differential orbital covalency. , 2003, Journal of the American Chemical Society.

[35]  M. Dry,et al.  The Fischer–Tropsch process: 1950–2000 , 2002 .

[36]  M. Kaneko,et al.  Electrocatalytic CO2 reduction by cobalt octabutoxyphthalocyanine coated on graphite electrode , 1996 .

[37]  D. Briggs,et al.  High Resolution XPS of Organic Polymers: The Scienta ESCA300 Database , 1992 .

[38]  P. Christensen,et al.  An in-situ ftir study of the electroreduction of Co2 by copc-coated edge graphite electrodes , 1988 .

[39]  M. N. Mahmood,et al.  Use of gas-diffusion electrodes for high-rate electrochemical reduction of carbon dioxide. II. Reduction at metal phthalocyanine-impregnated electrodes , 1987 .

[40]  B. Ratner,et al.  Surface structure of segmented poly(ether urethanes) and poly(ether urethane ureas) with various perfluoro chain extenders. An x-ray photoelectron spectroscopic investigation , 1986 .

[41]  Charles M. Lieber,et al.  Catalytic reduction of carbon dioxide at carbon electrodes modified with cobalt phthalocyanine , 1984 .

[42]  M. Ichikawa,et al.  Electrocatalysis by metal phthalocyanines in the reduction of carbon dioxide , 1974 .

[43]  L. Rollmann,et al.  Electrochemistry, electron paramagnetic resonance, and visible spectra of cobalt, nickel, copper, and metal-free phthalocyanines in dimethyl sulfoxide , 1968 .

[44]  L. Lozzi,et al.  High resolution XPS studies on hexadecafluoro-copper-phthalocyanine deposited onto Si( 1 1 1 )7×7 surface , 2001 .

[45]  E. Fujita,et al.  Photo-Induced Generation of Dihydrogen and Reduction of Carbon Dioxide Using Transition Metal Complexes , 1997 .

[46]  H. Schwarz,et al.  Reduction potentials of CO2- and the alcohol radicals , 1989 .