Multilevel and Multi-index Monte Carlo methods for the McKean–Vlasov equation

[1]  Dirk Nuyens,et al.  A Multi-Index Quasi-Monte Carlo Algorithm for Lognormal Diffusion Problems , 2016, SIAM J. Sci. Comput..

[2]  Pierre Del Moral,et al.  On the Stability and the Uniform Propagation of Chaos of a Class of Extended Ensemble Kalman-Bucy Filters , 2016, SIAM J. Control. Optim..

[3]  L. Ricketson A multilevel Monte Carlo method for a class of McKean-Vlasov processes , 2015, 1508.02299.

[4]  Radek Erban,et al.  A Cucker-Smale Model with Noise and Delay , 2015, SIAM J. Appl. Math..

[5]  Vassili N. Kolokoltsov,et al.  On mean field games with common noise and McKean-Vlasov SPDEs , 2015, Stochastic Analysis and Applications.

[6]  Sten Rüdiger,et al.  Particle-Based Multiscale Modeling of Calcium Puff Dynamics , 2015, Multiscale Model. Simul..

[7]  R. Erban,et al.  Particle-based multiscale modeling of intracellular calcium dynamics , 2015 .

[8]  Fabio Nobile,et al.  Multi-index Monte Carlo: when sparsity meets sampling , 2014, Numerische Mathematik.

[9]  Fabio Nobile,et al.  Optimization of mesh hierarchies in multilevel Monte Carlo samplers , 2014, Stochastics and Partial Differential Equations Analysis and Computations.

[10]  R. Tempone,et al.  A continuation multilevel Monte Carlo algorithm , 2014, BIT Numerical Mathematics.

[11]  Bruce I. Cohen,et al.  Multilevel Monte Carlo simulation of Coulomb collisions , 2013, J. Comput. Phys..

[12]  C. Reisinger,et al.  Multilevel Simulation of Functionals of Bernoulli Random Variables with Application to Basket Credit Derivatives , 2012, 1211.0707.

[13]  Abdul Lateef,et al.  Pedestrian Flow in the Mean Field Limit , 2012 .

[14]  M. Giles,et al.  Antithetic multilevel Monte Carlo estimation for multi-dimensional SDEs without Lévy area simulation , 2012, 1202.6283.

[15]  R. Erban,et al.  From individual to collective behaviour of coupled velocity jump processes: a locust example , 2011, 1104.2584.

[16]  Michael B. Giles,et al.  Multilevel Monte Carlo Path Simulation , 2008, Oper. Res..

[17]  R. Spigler,et al.  The Kuramoto model: A simple paradigm for synchronization phenomena , 2005 .

[18]  Stefan Heinrich,et al.  Multilevel Monte Carlo Methods , 2001, LSSC.

[19]  D. Talay,et al.  Convergence Rate for the Approximation of the Limit Law of Weakly Interacting Particles 2: Application to the Burgers Equation , 1996 .

[20]  Helbing,et al.  Social force model for pedestrian dynamics. , 1995, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[21]  P. Kloeden,et al.  Numerical Solution of Stochastic Differential Equations , 1992 .

[22]  Leslie Greengard,et al.  A fast algorithm for particle simulations , 1987 .

[23]  Ole Tange,et al.  GNU Parallel: The Command-Line Power Tool , 2011, login Usenix Mag..

[24]  K. A. Cliffe,et al.  Multilevel Monte Carlo methods and applications to elliptic PDEs with random coefficients , 2011, Comput. Vis. Sci..

[25]  M. Giles Improved Multilevel Monte Carlo Convergence using the Milstein Scheme , 2008 .

[26]  Mireille Bossy,et al.  A stochastic particle method for the McKean-Vlasov and the Burgers equation , 1997, Math. Comput..

[27]  A. Sznitman Topics in propagation of chaos , 1991 .

[28]  École d'été de probabilités de Saint-Flour,et al.  Ecole d'été de probabilités de Saint-Flour XIX, 1989 , 1991 .

[29]  J. Gärtner On the McKean‐Vlasov Limit for Interacting Diffusions , 1988 .

[30]  J. CARRIERt,et al.  A FAST ADAPTIVE MULTIPOLE ALGORITHM FOR PARTICLE SIMULATIONS * , 2022 .