A Bayesian approach to the real-time estimation of magnitude from the early P and S wave displacement peaks

[1] It has been shown that the initial portion of P and S wave signals can provide information about the final earthquake magnitude in a wide magnitude range. This observation opens the perspective for the real-time determination of source parameters. In this paper we describe a probabilistic evolutionary approach for the real-time magnitude estimation which can have a potential use in earthquake early warning. The technique is based on empirical prediction laws correlating the low-frequency peak ground displacement measured in a few seconds after the P and/or S phase arrival and the final event magnitude. The evidence for such a correlation has been found through the analysis of 256 shallow crustal events in the magnitude range Mjma 4–7.1 located over the entire Japanese archipelago. The peak displacement measured in a 2-s window from the first P phase arrival correlates with magnitude in the range M = [4–6.5]. While a possible saturation effect above M ≃ 6.5 is observed, it is less evident in an enlarged window of 4 s. The scaling of S peaks with magnitude is instead also observed at smaller time lapses (i.e., 1 s) after the first S arrival. The different scaling of P and S peaks with magnitude when measured in a 2-s window is explained in terms of different imaged rupture surface by the early portion of the body wave signals. We developed a technique to estimate the probability density function (PDF) of magnitude, at each time step after the event origin. The predicted magnitude value corresponds to the maximum of PDF, while its uncertainty is given by the 95% confidence bound. The method has been applied to the 2007 (Mjma = 6.9) Noto Hanto and 1995 (Mjma = 7.3) Kobe earthquakes. The results of this study can be summarized as follows: (1) The probabilistic algorithm founded on the predictive model of peak displacement versus final magnitude is able to provide a fast and robust estimation of the final magnitude. (2) The information available after a few seconds from the first detection of the P phase at the network can be used to predict the peak ground motion at a given regional target with uncertainties which are comparable to those derived from the attenuation law. (3) The near-source S phase data can be used jointly with P data for regional early warning purposes, thus increasing the accuracy and reliability of magnitude estimation.

[1]  Paul G. Richards,et al.  Quantitative Seismology: Theory and Methods , 1980 .

[2]  John H. Woodhouse,et al.  Determination of earthquake source parameters from waveform data for studies of global and regional seismicity , 1981 .

[3]  Changjiang Wu,et al.  Comment on “Earthquake magnitude estimation from peak amplitudes of very early seismic signals on strong motion records” by Aldo Zollo, Maria Lancieri, and Stefan Nielsen , 2007 .

[4]  Aldo Zollo,et al.  Earthquake magnitude estimation from peak amplitudes of very early seismic signals on strong motion records , 2006 .

[5]  Kenneth W. Campbell,et al.  Strong Motion Attenuation Relations: A Ten-Year Perspective , 1985 .

[6]  A. Hasegawa,et al.  Evidence for the location and cause of large crustal earthquakes in Japan , 2000 .

[7]  Kojiro Irikura,et al.  Fault Geometry at the Rupture Termination of the 1995 Hyogo-ken Nanbu Earthquake , 2000 .

[8]  C. Tsuboi Determination of the GUTENBERG-RICHTER'E Magnitude of Earthquakes occurring in and near Japan , 1954 .

[9]  D. Wald Slip History of the 1995 Kobe, Japan, Earthquake Determined from Strong Motion, Teleseismic, and Geodetic Data , 1996 .

[10]  Shingo Yoshida,et al.  Joint Inversion of Near- and Far-field Waveforms and Geodetic Data for the Rupture Process of the 1995 Kobe Earthquake , 1996 .

[11]  Hiroo Kanamori,et al.  Real-Time Seismology and Earthquake Damage Mitigation , 2005 .

[12]  Shinji Sato,et al.  A New Method of Quickly Estimating Epicentral Distance and Magnitude from a Single Seismic Record , 2003 .

[13]  Osamu Kamigaichi,et al.  JMA EARTHQUAKE EARLY WARNING , 2004 .

[14]  Y. Fujinawa,et al.  An Automatic Processing System for Broadcasting Earthquake Alarms , 2005 .

[15]  Masajiro Imoto,et al.  Probabilistic estimation of earthquake growth to a catastrophic one , 2005 .

[16]  Kojiro Irikura,et al.  Minute Locating of Faulting beneath Kobe and the Waveform Inversion of the Source Process during the 1995 Hyogo-ken Nanbu, Japan, Earthquake Using Strong Ground Motion Records , 1996 .

[17]  V. K. Borok On estimation of the displacement in an earthquake source and of source dimensions , 1959 .

[18]  D. Wells,et al.  New empirical relationships among magnitude, rupture length, rupture width, rupture area, and surface displacement , 1994, Bulletin of the Seismological Society of America.

[19]  Richard M. Allen,et al.  The ElarmS Earthquake Early Warning Methodology and Application across California , 2007 .

[20]  Makoto Saito,et al.  Earthquake Early Warning Starts Nationwide in Japan , 2008 .

[21]  Hiroyuki Fujiwara,et al.  A New Attenuation Relation for Strong Ground Motion in Japan Based on Recorded Data , 2006 .

[22]  Wen-Tzong Liang,et al.  Magnitude determination using initial P waves: A single‐station approach , 2006 .

[23]  Gaetano Manfredi,et al.  Expected loss‐based alarm threshold set for earthquake early warning systems , 2007 .

[24]  Gaetano Festa,et al.  Does The Slip In The Early Steps Of The Rupture Scale With The Final Magnitude Of The Event , 2007 .

[25]  Aldo Zollo,et al.  Real-time evolutionary earthquake location for seismic early warning , 2008 .

[26]  Satoshi Ide,et al.  Source process of the 1995 Kobe earthquake: Determination of spatio-temporal slip distribution by Bayesian modeling , 1996 .

[27]  B. V. Kostrov,et al.  Selfsimilar problems of propagation of shear cracks , 1964 .

[28]  Hiroo Kanamori,et al.  Rapid Assessment of Damage Potential of Earthquakes in Taiwan from the Beginning of P Waves , 2005 .

[29]  T. Utsu Representation and Analysis of the Earthquake Size Distribution: A Historical Review and Some New Approaches , 1999 .

[30]  Akio Katsumata,et al.  Comparison of magnitudes estimated by the Japan Meteorological Agency with moment magnitudes for intermediate and deep earthquakes , 1996, Bulletin of the Seismological Society of America.

[31]  Gaetano Manfredi,et al.  REAL-TIME RISK ANALYSIS FOR HYBRID EARTHQUAKE EARLY WARNING SYSTEMS , 2006 .

[32]  F. Waldhauser,et al.  Detailed Fault Structure of the 2000 Western Tottori, Japan, Earthquake Sequence , 2003 .

[33]  G. Roe,et al.  REAL-TIME SEISMOLOGY AND EARTHQUAKE DAMAGE MITIGATION , 2005 .

[34]  Hiroo Kanamori,et al.  Experiment on an Onsite Early Warning Method for the Taiwan Early Warning System , 2005 .

[35]  Aldo Zollo,et al.  Reply to comment by P. Rydelek et al. on “Earthquake magnitude estimation from peak amplitudes of very early seismic signals on strong motion records” , 2007 .

[36]  Thomas H. Heaton,et al.  The Virtual Seismologist (VS) Method: a Bayesian Approach to Earthquake Early Warning , 2007 .

[37]  Li Zhao,et al.  Magnitude estimation using the first three seconds P‐wave amplitude in earthquake early warning , 2006 .

[38]  P. Bernard,et al.  A new asymptotic method for the modeling of near-field accelerograms , 1984 .

[39]  P. Rydelek,et al.  Earth science: Is earthquake rupture deterministic? , 2006, Nature.

[40]  L. Neil Frazer,et al.  Use of ray theory to calculate high-frequency radiation from earthquake sources having spatially variable rupture velocity and stress drop , 1984 .

[41]  H. Kanamori,et al.  The Potential for Earthquake Early Warning in Southern California , 2003, Science.

[42]  K. Doi Earthquake Early Warning System in Japan , 2003 .

[43]  Gaetano Manfredi,et al.  Expected loss‐based alarm threshold set for earthquake early warning systems Earthquake Engng Struct. Dyn. 2007 (DOI: 10.1002/eqe.675) , 2007 .

[44]  H. Kao,et al.  Hypocentre determination offshore of eastern Taiwan using the Maximum Intersection method , 2004 .

[45]  S. Wesnousky Crustal deformation processes and the stability of the Gutenberg-Richter relationship , 1999, Bulletin of the Seismological Society of America.

[46]  Richard M. Allen,et al.  The deterministic nature of earthquake rupture , 2005, Nature.