<jats:p>Let <jats:italic>K</jats:italic> be a compact Lie group and <jats:italic>V</jats:italic> a finite-dimensional representation of <jats:italic>K</jats:italic>. The orbitope of a vector <jats:inline-formula><jats:alternatives><jats:tex-math>$$x\in V$$</jats:tex-math><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML">
<mml:mrow>
<mml:mi>x</mml:mi>
<mml:mo>∈</mml:mo>
<mml:mi>V</mml:mi>
</mml:mrow>
</mml:math></jats:alternatives></jats:inline-formula> is the convex hull <jats:inline-formula><jats:alternatives><jats:tex-math>$${\mathscr {O}}_x$$</jats:tex-math><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML">
<mml:msub>
<mml:mi>O</mml:mi>
<mml:mi>x</mml:mi>
</mml:msub>
</mml:math></jats:alternatives></jats:inline-formula> of the orbit <jats:italic>Kx</jats:italic> in <jats:italic>V</jats:italic>. We show that if <jats:italic>V</jats:italic> is polar then <jats:inline-formula><jats:alternatives><jats:tex-math>$${\mathscr {O}}_x$$</jats:tex-math><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML">
<mml:msub>
<mml:mi>O</mml:mi>
<mml:mi>x</mml:mi>
</mml:msub>
</mml:math></jats:alternatives></jats:inline-formula> is a spectrahedron, and we produce an explicit linear matrix inequality representation. We also consider the coorbitope <jats:inline-formula><jats:alternatives><jats:tex-math>$${\mathscr {O}}_x^o$$</jats:tex-math><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML">
<mml:msubsup>
<mml:mi>O</mml:mi>
<mml:mi>x</mml:mi>
<mml:mi>o</mml:mi>
</mml:msubsup>
</mml:math></jats:alternatives></jats:inline-formula>, which is the convex set polar to <jats:inline-formula><jats:alternatives><jats:tex-math>$${\mathscr {O}}_x$$</jats:tex-math><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML">
<mml:msub>
<mml:mi>O</mml:mi>
<mml:mi>x</mml:mi>
</mml:msub>
</mml:math></jats:alternatives></jats:inline-formula>. We prove that <jats:inline-formula><jats:alternatives><jats:tex-math>$${\mathscr {O}}_x^o$$</jats:tex-math><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML">
<mml:msubsup>
<mml:mi>O</mml:mi>
<mml:mi>x</mml:mi>
<mml:mi>o</mml:mi>
</mml:msubsup>
</mml:math></jats:alternatives></jats:inline-formula> is the convex hull of finitely many <jats:italic>K</jats:italic>-orbits, and we identify the cases in which <jats:inline-formula><jats:alternatives><jats:tex-math>$${\mathscr {O}}_x^o$$</jats:tex-math><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML">
<mml:msubsup>
<mml:mi>O</mml:mi>
<mml:mi>x</mml:mi>
<mml:mi>o</mml:mi>
</mml:msubsup>
</mml:math></jats:alternatives></jats:inline-formula> is itself an orbitope. In these cases one has <jats:inline-formula><jats:alternatives><jats:tex-math>$${\mathscr {O}}_x^o=c\cdot {\mathscr {O}}_x$$</jats:tex-math><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML">
<mml:mrow>
<mml:msubsup>
<mml:mi>O</mml:mi>
<mml:mi>x</mml:mi>
<mml:mi>o</mml:mi>
</mml:msubsup>
<mml:mo>=</mml:mo>
<mml:mi>c</mml:mi>
<mml:mo>·</mml:mo>
<mml:msub>
<mml:mi>O</mml:mi>
<mml:mi>x</mml:mi>
</mml:msub>
</mml:mrow>
</mml:math></jats:alternatives></jats:inline-formula> with <jats:inline-formula><jats:alternatives><jats:tex-math>$$c>0$$</jats:tex-math><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML">
<mml:mrow>
<mml:mi>c</mml:mi>
<mml:mo>></mml:mo>
<mml:mn>0</mml:mn>
</mml:mrow>
</mml:math></jats:alternatives></jats:inline-formula>. Moreover we show that if <jats:italic>x</jats:italic> has “rational coefficients” then <jats:inline-formula><jats:alternatives><jats:tex-math>$${\mathscr {O}}_x^o$$</jats:tex-math><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML">
<mml:msubsup>
<mml:mi>O</mml:mi>
<mml:mi>x</mml:mi>
<mml:mi>o</mml:mi>
</mml:msubsup>
</mml:math></jats:alternatives></jats:inline-formula> is again a spectrahedron. This provides many new families of doubly spectrahedral orbitopes. All polar orbitopes that are derived from classical semisimple Lie algebras can be described in terms of conditions on singular values and Ky Fan matrix norms.</jats:p>
[1]
G. Lusztig,et al.
The inverse of a Cartan matrix
,
1992
.
[2]
G. G. Stokes.
"J."
,
1890,
The New Yale Book of Quotations.
[3]
A. W. Knapp.
Lie groups beyond an introduction
,
1988
.
[4]
M. Eastwood.
The Cartan Product
,
2005
.
[5]
Polar orbitopes
,
2012,
1206.5717.
[6]
Carlos Tomei,et al.
Geometric proofs of some theorems of Schur-Horn type
,
1999
.
[7]
Gorjan Alagic,et al.
#p
,
2019,
Quantum information & computation.
[8]
B. Kostant.
On convexity, the Weyl group and the Iwasawa decomposition
,
1973
.
[9]
P. Alam.
‘A’
,
2021,
Composites Engineering: An A–Z Guide.
[10]
Pablo A. Parrilo,et al.
Semidefinite Descriptions of the Convex Hull of Rotation Matrices
,
2014,
SIAM J. Optim..
[11]
K. Fan,et al.
Maximum Properties and Inequalities for the Eigenvalues of Completely Continuous Operators.
,
1951,
Proceedings of the National Academy of Sciences of the United States of America.
[12]
Joe Harris,et al.
Representation Theory: A First Course
,
1991
.
[13]
Leonardo Biliotti,et al.
Coadjoint orbitopes
,
2011,
1110.6039.
[14]
R. Schneider.
Convex Bodies: The Brunn–Minkowski Theory: Minkowski addition
,
1993
.
[15]
Rainer Sinn.
Algebraic Boundaries of $$\mathrm{SO}(2)$$SO(2)-Orbitopes
,
2013,
Discret. Comput. Geom..
[16]
Jiri Dadok.
Polar coordinates induced by actions of compact Lie groups
,
1985
.
[17]
P. Alam.
‘T’
,
2021,
Composites Engineering: An A–Z Guide.
[18]
W. Casselman.
Geometric rationality of Satake compactifications
,
2009
.
[19]
D. Farenick,et al.
The spectral theorem in quaternions
,
2003
.
[20]
Jacques Tits.
Tabellen zu den einfachen Lie Gruppen und ihren Darstellungen
,
1967
.
[21]
Thomas de Quincey.
[C]
,
2000,
The Works of Thomas De Quincey, Vol. 1: Writings, 1799–1820.
[22]
Jacques Tits,et al.
Groupes Réductifs
,
1965
.
[23]
Fuzhen Zhang.
Quaternions and matrices of quaternions
,
1997
.
[24]
Miss A.O. Penney.
(b)
,
1974,
The New Yale Book of Quotations.
[25]
R. Carter.
Lie Groups
,
1970,
Nature.
[26]
A. L. Onishchik,et al.
Lie Groups and Lie Algebras III
,
1993
.
[27]
M. Sugiura.
Conjugate classes of Cartan subalgebras in real semisimple Lie algebras.
,
1959
.
[28]
T. Ratiu,et al.
Momentum Maps and Hamiltonian Reduction
,
2003
.
[29]
Tim Kobert.
Spectrahedral and semidefinite representability of orbitopes
,
2019
.
[30]
I. Satake,et al.
ON REPRESENTATIONS AND COMPACTIFICATIONS OF SYMMETRIC RIEMANNIAN SPACES
,
1960
.
[31]
S. Helgason.
Differential Geometry, Lie Groups, and Symmetric Spaces
,
1978
.
[32]
Chek Beng Chua.
Relating Homogeneous Cones and Positive Definite Cones via T-Algebras
,
2003,
SIAM J. Optim..
[33]
Claus Scheiderer,et al.
Spectrahedral Shadows
,
2016,
SIAM J. Appl. Algebra Geom..