Polynomial root separation in terms of the Remak height

We investigate some monic integer irreducible polynomials which have two close roots. If P(x) is a separable polynomial in Z[x] of degree d \geq 2 with the Remak height R(P) and the minimal distance between the quotient of two distinct roots and unity Sep(P), then the inequality 1/Sep(P) \ll R(P)d-1 is true with the implied constant depending on d only. Using a recent construction of Bugeaud and Dujella we show that for each d \geq 3 there exists an irreducible monic polynomial P \in Z[x] of degree d for which R(P)(2d-3)(d-1)/(3d-5) \ll 1/Sep(P). For d=3 the exponent 3/2 is improved to 5/3 and it is shown that the exponent 2 is optimal in the class of cubic (not necessarily monic) irreducible polynomials in Z[x].

[1]  L. V. Danilov Diophantine equation x3−y2=k and Hall's conjecture , 1982 .

[2]  M. Mignotte,et al.  Distance entre les racines d'un polynôme , 1979 .

[3]  The Remak height for units , 2002 .

[4]  M. Mignotte,et al.  POLYNOMIAL ROOT SEPARATION , 2010 .

[5]  D. J. Uherka,et al.  On the Continuous Dependence of the Roots of a Polynomial on its Coefficients , 1977 .

[6]  Yann Bugeaud,et al.  Root separation for irreducible integer polynomials , 2010, 1007.3406.

[7]  W. Rogosinski,et al.  The Geometry of the Zeros of a Polynomial in a Complex Variable , 1950, The Mathematical Gazette.

[8]  B. Brindza Distances between the conjugates of an algebraic number , 2005 .

[9]  K. Mahler An inequality for the discriminant of a polynomial. , 1964 .

[10]  M. Mignotte Some Useful Bounds , 1983 .

[11]  R. Güting,et al.  Polynomials with multiple zeros , 1967 .

[12]  F. Gotze,et al.  The distribution of close conjugate algebraic numbers , 2009, Compositio Mathematica.

[13]  R. Remak Über Größenbeziehungen zwischen Diskriminante und Regulator eines algebraischen Zahlkörpers , 1952 .

[14]  M. Mignotte,et al.  ON THE DISTANCE BETWEEN ROOTS OF INTEGER POLYNOMIALS , 2004, Proceedings of the Edinburgh Mathematical Society.

[15]  Maurice Mignotte,et al.  On the distance between the roots of a polynomial , 1995, Applicable Algebra in Engineering, Communication and Computing.

[16]  Arnold Schönhage,et al.  Polynomial root separation examples , 2006, J. Symb. Comput..

[17]  A. Dubickas On a conjecture of A. Schinzel and H. Zassenhaus , 1993 .

[18]  A. Dujella,et al.  Root Separation for Reducible Monic Quartics , 2011 .

[19]  ON THE REMAK HEIGHT, THE MAHLER MEASURE AND CONJUGATE SETS OF ALGEBRAIC NUMBERS LYING ON TWO CIRCLES , 2001, Proceedings of the Edinburgh Mathematical Society.