The Barrier of Objects: From Dynamical Systems to Bounded Organizations

ion Ax ∪ {x : τ ′} e : τ A λx.e : τ ′ → τ Let A e : σ Ax ∪ {x : σ} e′ : τ A (let x = e in e′) : τ The meaning of the Taut-rule is simply that a free variable has the type assigned to it in the boundary condition. If there is no assignment the expression x is not typable, and is barred from the universe. The meaning of rule App is also clear. It is useful, however, to know how the rule is implemented, since it introduces an important concept. Suppose that we have an object e whose type has been established to be σ, and that we want to apply it to an object e′ of type τ ′. For this to be possible e must have a type of the form τ ′ → τ where τ stands for a generic unknown type of (e)e′ that needs to be determined. Hence, for the interaction (e)e′ to be possible e’s established type σ and the required type τ ′ → τ must be made equal. This may be possible, since σ and τ ′ may contain type variables which can be made more specific in order to satisfy the equality. This means we must look for some type substitution T of the free variables in σ and in τ ′ → τ such that Tσ = T (τ ′ → τ). T is called a unifier, and the procedure for finding T is called unification. It boils down to solving a set of equations. For details about how this procedure is carried out the reader is referred to any standard textbook on type theory. The point is that a

[1]  J Mingers,et al.  Self-Producing Systems—Implications and Applications of Autopoiesis , 1997 .

[2]  Brian Cantwell Smith,et al.  On the origin of objects , 1997, Trends in Cognitive Sciences.

[3]  J. Mingers,et al.  Self-Producing Systems: Implications and Applications of Autopoiesis , 1996 .

[4]  Luca Cardelli Type systems , 1996, CSUR.

[5]  Eörs Szathmáry,et al.  The Major Transitions in Evolution , 1997 .

[6]  Andrea Asperti,et al.  Causal dependencies in multiplicative linear logic with MIX , 1995, Mathematical Structures in Computer Science.

[7]  E. Szathmáry,et al.  A classification of replicators and lambda-calculus models of biological organization , 1995, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[8]  Takashi Ikegami,et al.  Coevolution of Machines and Tapes , 1995, ECAL.

[9]  Vincent Danos,et al.  Proof-nets and the Hilbert space , 1995 .

[10]  Jean-Yves Girard,et al.  Linear logic: its syntax and semantics , 1995 .

[11]  Y. Lafont From proof-nets to interaction nets , 1995 .

[12]  Chris Hankin Lambda Calculi: A Guide for Computer Scientists , 1995 .

[13]  Michel Mauny,et al.  Functional programming using Caml Light , 1995 .

[14]  Christian Retoré,et al.  The mix rule , 1994, Mathematical Structures in Computer Science.

[15]  L W Buss,et al.  What would be conserved if "the tape were played twice"? , 1994, Proceedings of the National Academy of Sciences of the United States of America.

[16]  Leo W. Buss,et al.  “The arrival of the fittest”: Toward a theory of biological organization , 1994 .

[17]  E. Szathmáry Beginnings of cellular life: Metabolism recapitulates biogenesis , 1993 .

[18]  René Lalement Computation as logic , 1993, Prentice Hall International series in computer science.

[19]  C. Retoré,et al.  Réseaux et séquents ordonnés , 1993 .

[20]  Pier Luigi Luisi Defining the transition to life: Self-replicating bounded structures and chemical autopoiesis , 1993 .

[21]  Davide Sangiorgi,et al.  Expressing mobility in process algebras : first-order and higher-order paradigms , 1993 .

[22]  Marcel Thürk Ein Modell zur Selbstorganisation von Automatenalgorithmen zum Studium molekularer Evolution , 1993 .

[23]  John R. Koza,et al.  Genetic programming - on the programming of computers by means of natural selection , 1993, Complex adaptive systems.

[24]  Walter Fontana,et al.  Beyond Digital Naturalism , 1993, Artificial Life.

[25]  Robin Milner,et al.  The Polyadic π-Calculus: a Tutorial , 1993 .

[26]  Vaughan R. Pratt,et al.  The Duality of TIme and Information , 1992, CONCUR.

[27]  Patrick Lincoln,et al.  Linear logic , 1992, SIGA.

[28]  ROBIN MILNER,et al.  Edinburgh Research Explorer A Calculus of Mobile Processes, I , 2003 .

[29]  H. Morowitz Beginnings of Cellular Life: Metabolism Recapitulates Biogenesis , 1992 .

[30]  Robin Milner,et al.  A Calculus of Mobile Processes, II , 1992, Inf. Comput..

[31]  A. Troelstra Lectures on linear logic , 1992 .

[32]  R. Rosen Life Itself: A Comprehensive Inquiry Into the Nature, Origin, and Fabrication of Life , 1991 .

[33]  A. J. J. Dick An Introduction to Knuth-Bendix Completion , 1991, Comput. J..

[34]  L. Peliti A spin-glass model of chemical evolution , 1990 .

[35]  Steen Rasmussen,et al.  The coreworld: emergence and evolution of cooperative structures in a computational chemistry , 1990 .

[36]  R. J. Bagley,et al.  Spontaneous emergence of a metabolism , 1990 .

[37]  Gérard Berry,et al.  The chemical abstract machine , 1989, POPL '90.

[38]  Vincent Danos,et al.  The structure of multiplicatives , 1989, Arch. Math. Log..

[39]  Schuster,et al.  Physical aspects of evolutionary optimization and adaptation. , 1989, Physical review. A, General physics.

[40]  Jean-Yves Girard,et al.  Towards a geometry of interaction , 1989 .

[41]  Robin Milner,et al.  Communication and concurrency , 1989, PHI Series in computer science.

[42]  Chris Reade,et al.  Elements of functional programming , 1989, International computer science series.

[43]  J. Girard,et al.  Proofs and types , 1989 .

[44]  Jean-Yves Girard,et al.  Geometry of interaction 2: deadlock-free algorithms , 1990, Conference on Computer Logic.

[45]  M. Eigen,et al.  Molecular quasi-species. , 1988 .

[46]  J. S. McCaskill Polymer chemistry on tape: A computational model for emergent genetics. , 1988 .

[47]  Matthew Hennessy,et al.  Algebraic theory of processes , 1988, MIT Press series in the foundations of computing.

[48]  David E. Goldberg,et al.  Genetic Algorithms in Search Optimization and Machine Learning , 1988 .

[49]  L. Buss,et al.  The evolution of individuality , 1987 .

[50]  John H. Holland,et al.  Escaping brittleness: the possibilities of general-purpose learning algorithms applied to parallel rule-based systems , 1995 .

[51]  S. Kauffman,et al.  Autocatalytic replication of polymers , 1986 .

[52]  S. Kauffman Autocatalytic sets of proteins. , 1986 .

[53]  Luca Cardelli,et al.  On understanding types, data abstraction, and polymorphism , 1985, CSUR.

[54]  Henk Barendregt,et al.  The Lambda Calculus: Its Syntax and Semantics , 1985 .

[55]  Peter Klopfer,et al.  The Ontogeny of Information , 2000 .

[56]  D. Knuth,et al.  Simple Word Problems in Universal Algebras , 1983 .

[57]  C. Pollard,et al.  Center for the Study of Language and Information , 2022 .

[58]  Robin Milner,et al.  Principal type-schemes for functional programs , 1982, POPL '82.

[59]  H. Maturana,et al.  Autopoiesis and Cognition : The Realization of the Living (Boston Studies in the Philosophy of Scie , 1980 .

[60]  de Ng Dick Bruijn,et al.  A survey of the project Automath , 1980 .

[61]  F. Dick A survey of the project Automath , 1980 .

[62]  Robin Milner,et al.  A Calculus of Communicating Systems , 1980, Lecture Notes in Computer Science.

[63]  F. Varela Principles of biological autonomy , 1979 .

[64]  Robin Milner,et al.  A Theory of Type Polymorphism in Programming , 1978, J. Comput. Syst. Sci..

[65]  C. A. R. Hoare,et al.  Communicating sequential processes , 1978, CACM.

[66]  John H. Holland,et al.  Adaptation in Natural and Artificial Systems: An Introductory Analysis with Applications to Biology, Control, and Artificial Intelligence , 1992 .

[67]  H. Maturana,et al.  Autopoiesis: the organization of living systems, its characterization and a model. , 1974, Currents in modern biology.

[68]  Robert Rosen,et al.  Foundations of mathematical biology , 1972 .

[69]  Stuart A. Kauffman,et al.  Cellular Homeostasis, Epigenesis and Replication in Randomly Aggregated Macromolecular Systems , 1971 .

[70]  John Maynard Smith,et al.  Natural Selection and the Concept of a Protein Space , 1970, Nature.

[71]  J. Maynard Smith Natural Selection and the Concept of a Protein Space , 1970 .

[72]  M. E. Szabo,et al.  The collected papers of Gerhard Gentzen , 1969 .

[73]  William A. Howard,et al.  The formulae-as-types notion of construction , 1969 .

[74]  A. Church The calculi of lambda-conversion , 1941 .

[75]  G. Gentzen Untersuchungen über das logische Schließen. I , 1935 .

[76]  A. Church A Set of Postulates for the Foundation of Logic , 1932 .

[77]  M. Schönfinkel Über die Bausteine der mathematischen Logik , 1924 .

[78]  Gottlob Frege,et al.  Begriffsschrift, eine der arithmetischen nachgebildete Formelsprache des reinen Denkens , 1879 .