An application of generalized predictive control to rotorcraft terrain-following flight

Generalized predictive control (GPC) describes an algorithm for the control of dynamic systems in which a control input is generated which minimizes a quadratic cost function consisting of a weighted sum of errors between desired and predicted future system output and future predicted control increments. The output predictions are obtained from an internal model of the plant dynamics. The GPC algorithm is first applied to a simplified rotorcraft terrain-following problem, and GPC performance is compared to that of a conventional compensatory automatic system in terms of flight-path following, control activity and control law implementation. Next, more realistic vehicle dynamics are utilized and the GPC algorithm is applied to simultaneous terrain following and velocity control in the presence of atmospheric disturbances and errors in the internal model of the vehicle. The online computational and sensing requirements for implementing the GPC algorithm are minimal. Its use for manual control models appears promising. >