Positive solutions for Schrödinger–Poisson equations with a critical exponent

Abstract In this paper we establish the existence of a positive solution of the Schrodinger–Poisson equations with a critical Sobolev exponent. The methods used here are based on the concentration–compactness principle of P. L. Lions and methods of Brezis and Nirenberg.

[1]  Walter A. Strauss,et al.  Existence of solitary waves in higher dimensions , 1977 .

[2]  Vieri Benci,et al.  An eigenvalue problem for the Schrödinger-Maxwell equations , 1998 .

[3]  P. Rabinowitz,et al.  Dual variational methods in critical point theory and applications , 1973 .

[4]  Juncheng Wei,et al.  On Bound States Concentrating on Spheres for the Maxwell-Schrödinger Equation , 2005, SIAM J. Math. Anal..

[5]  ON THE EXISTENCE OF NONTRIVIAL SOLUTION OF A QUASI LINEAR ELLIPTIC BOUNDARY VALUE PROBLEM FOR UNBOUNDED DOMAINS: (2) Zero Mass Case , 1987 .

[6]  L. Jeanjean,et al.  A positive solution for a nonlinear Schrödinger equation on Rn , 2005 .

[7]  Haim Brezis,et al.  Positive Solutions of Nonlinear Elliptic Equations Involving Critical Sobolev Exponents Haim Brezis , 2022 .

[8]  Michael Struwe,et al.  The existence of surfaces of constant mean curvature with free boundaries , 1988 .

[9]  David Ruiz,et al.  The Schrödinger–Poisson equation under the effect of a nonlinear local term , 2006 .

[10]  P. Lions The concentration-compactness principle in the calculus of variations. The locally compact case, part 1 , 1984 .

[11]  M. Willem Minimax Theorems , 1997 .

[12]  Dimitri Mugnai,et al.  Solitary waves for nonlinear Klein–Gordon–Maxwell and Schrödinger–Maxwell equations , 2004, Proceedings of the Royal Society of Edinburgh: Section A Mathematics.

[13]  Dimitri Mugnai,et al.  Non-Existence Results for the Coupled Klein-Gordon-Maxwell Equations , 2004 .

[14]  Pietro d’Avenia,et al.  Non-radially symmetric solutions of nonlinear Schrödinger equation coupled with Maxwell equations , 2002 .

[15]  Hiroaki Kikuchi On the existence of a solution for elliptic system related to the Maxwell–Schrödinger equations , 2007 .

[16]  Elliott H. Lieb,et al.  A Relation Between Pointwise Convergence of Functions and Convergence of Functionals , 1983 .

[17]  I. Ekeland On the variational principle , 1974 .

[18]  Louis Jeanjean,et al.  On the existence of bounded Palais–Smale sequences and application to a Landesman–Lazer-type problem set on ℝN , 1999, Proceedings of the Royal Society of Edinburgh: Section A Mathematics.

[19]  Paul H. Rabinowitz,et al.  On a class of nonlinear Schrödinger equations , 1992 .

[20]  Jing Zeng,et al.  Ground states of nonlinear Schrödinger equations with potentials , 2006 .

[21]  David Ruiz,et al.  SEMICLASSICAL STATES FOR COUPLED SCHRÖDINGER–MAXWELL EQUATIONS: CONCENTRATION AROUND A SPHERE , 2005 .