A high-performance TiO2 nanowire UV detector assembled by electrospinning

Here, a transparent, flexible and nanoscale TiO2 ultraviolet (UV) photodetector has been fabricated by electrospinning. Well aligned TiO2 nanowires were collected on a flexible mica substrate. Then, the nano-device was simply assembled by depositing interdigitated platinum electrodes on the surface. Upon UV illumination, the photosensitivity of this device is up to over three orders of magnitude with relatively fast and stable response speed under 254 nm and 365 nm UV light. This nanosensor retains a high photo-dark current ratio, fast response time and stable durability during bending tests, indicating an excellent reversibility and stability of the flexible TiO2 nanowires. The highly flexible photosensor demonstrates a good potential candidate for wearable optoelectronic applications.

[1]  W. Pan,et al.  Electrospun assembly: a nondestructive nanofabrication for transparent photosensors , 2017, Nanotechnology.

[2]  Yuting Wang,et al.  A stable and highly efficient visible-light photocatalyst of TiO2 and heterogeneous carbon core–shell nanofibers , 2017 .

[3]  J. Coleman,et al.  Sensitive electromechanical sensors using viscoelastic graphene-polymer nanocomposites , 2016, Science.

[4]  G. Zou,et al.  Plasmonic‐Radiation‐Enhanced Metal Oxide Nanowire Heterojunctions for Controllable Multilevel Memory , 2016 .

[5]  Eun Kwang Lee,et al.  Highly Flexible Organic Nanofiber Phototransistors Fabricated on a Textile Composite for Wearable Photosensors , 2016 .

[6]  Tianyou Zhai,et al.  A Fully Transparent and Flexible Ultraviolet–Visible Photodetector Based on Controlled Electrospun ZnO‐CdO Heterojunction Nanofiber Arrays , 2015 .

[7]  Hong Liu,et al.  Structure, Synthesis, and Applications of TiO2 Nanobelts , 2015, Advanced materials.

[8]  G. Sun,et al.  Global pattern for the effect of climate and land cover on water yield , 2015, Nature Communications.

[9]  Eunkyoung Kim,et al.  TiO2 nanoparticulate-wire hybrids for highly efficient solid-state dye-sensitized solar cells using SSP-PEDOTs , 2014 .

[10]  W. Pan,et al.  Electrical Behavior of Nonstoichiometric TiN1+x Nanofibers by Electrospinning , 2014 .

[11]  T. Ren,et al.  Large-area, transparent, and flexible infrared photodetector fabricated using P-N junctions formed by N-doping chemical vapor deposition grown graphene. , 2014, Nano letters.

[12]  Xiangcun Li,et al.  A highly responsive UV photodetector based on hierarchical TiO2 nanorod/nanoparticle composite , 2014 .

[13]  Soo Min Hwang,et al.  Core-shell structured silicon nanoparticles@TiO2-x/carbon mesoporous microfiber composite as a safe and high-performance lithium-ion battery anode. , 2014, ACS nano.

[14]  S. Ruan,et al.  Electrospun ZnO Nanofibers‐Based Ultraviolet Detector with High Responsivity , 2013 .

[15]  S. Dou,et al.  Structurally stabilized mesoporous TiO2 nanofibres for efficient dye-sensitized solar cells , 2013 .

[16]  Yi Cui,et al.  A transparent electrode based on a metal nanotrough network. , 2013, Nature nanotechnology.

[17]  Chao Zhang,et al.  Flexible SnO(2) hollow nanosphere film based high-performance ultraviolet photodetector. , 2013, Chemical communications.

[18]  Guohua Liu,et al.  Small diameter TiO2 nanotubes with enhanced photoresponsivity , 2013 .

[19]  Patrick Drogui,et al.  Modified TiO2 For Environmental Photocatalytic Applications: A Review , 2013 .

[20]  Yong‐Mook Kang,et al.  Structurally and electronically designed TiO₂Nx nanofibers for lithium rechargeable batteries. , 2013, ACS applied materials & interfaces.

[21]  Hui Wu,et al.  Electrospinning of ceramic nanofibers: Fabrication, assembly and applications , 2012, Journal of Advanced Ceramics.

[22]  S. Dou,et al.  Continually adjustable oriented 1D TiO2 nanostructure arrays with controlled growth of morphology and their application in dye-sensitized solar cells , 2012 .

[23]  Rong Chen,et al.  Ultrahigh efficient single-crystalline TiO2 nanorod photoconductors , 2012 .

[24]  N. Marzari,et al.  Ultraviolet Photodetectors Based on Anodic TiO2 Nanotube Arrays , 2010 .

[25]  Yiu-Wing Mai,et al.  Electrospinning of polymer nanofibers: Effects on oriented morphology, structures and tensile properties , 2010 .

[26]  Eric R. Waclawik,et al.  An efficient photocatalyst structure: TiO(2)(B) nanofibers with a shell of anatase nanocrystals. , 2009, Journal of the American Chemical Society.

[27]  R. Goyal,et al.  In situ high temperature XRD studies of ZnO nanopowder prepared via cost effective ultrasonic mist chemical vapour deposition , 2008 .

[28]  C. Soci,et al.  ZnO nanowire UV photodetectors with high internal gain. , 2007, Nano letters.

[29]  Sheng-Po Chang,et al.  Ultraviolet photodetectors with ZnO nanowires prepared on ZnO:Ga/glass templates , 2006 .

[30]  S. Ramakrishna,et al.  A review on electrospinning design and nanofibre assemblies , 2006, Nanotechnology.

[31]  Ashraful Islam,et al.  Conversion efficiency of 10.8% by a dye-sensitized solar cell using a TiO2 electrode with high haze , 2006 .

[32]  S. T. Lee,et al.  Fluorocarbon film as cathode protective coating in organic light-emitting devices , 2006 .

[33]  Mahmoud Ahmadian,et al.  Design and evaluation of basic standard encryption algorithm modules using nanosized complementary metal–oxide–semiconductor–molecular circuits , 2006 .

[34]  M. Sayagués,et al.  Photoactivity of anatase–rutile TiO2 nanocrystalline mixtures obtained by heat treatment of homogeneously precipitated anatase , 2005 .

[35]  Fang-Ting Kuo,et al.  Enhancement of the photo catalytic performance of TiO2 catalysts via transition metal modification , 2004 .

[36]  R. Asahi,et al.  Visible-Light Photocatalysis in Nitrogen-Doped Titanium Oxides , 2001, Science.

[37]  J. S. Lees,et al.  A structural investigation of titanium dioxide photocatalysts , 1991 .

[38]  S. Mohammad Nejad,et al.  Recent advances in ultraviolet photodetectors , 2015 .

[39]  S. Chang,et al.  A Visible-Blind TiO2 Nanowire Photodetector , 2012 .

[40]  Jean-Pierre Jolivet,et al.  Synthesis of brookite TiO2 nanoparticlesby thermolysis of TiCl4 in strongly acidic aqueous media , 2001 .